Toggle menu
310,1 tis.
50
18
525,6 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Funkcija (matematika)

Izvor: Hrvatska internetska enciklopedija
(Preusmjereno s Preslikavanje)

Funkcija ili preslikavanje je jedan od najvažnijih matematičkih pojmova koji predstavlja preslikavanje članova jednog skupa (domena) u drugi (kodomena).[1] Pri tome preslikavanje mora biti jedinstveno, tj. svaki član domene se preslikava u točno jedan član kodomene.

Definicija

Funkcija ili preslikavanje je uređena trojka koja sadrži skupove , i neko pravilo po kojem se svakom članu pridružuje jedinstveni član tako da je .

Skup se naziva područje definicije ili domena funkcije , a skup područje vrijednosti ili kodomena funkcije . Član domene je nezavisna varijabla ili argument funkcije , a član kodomene je zavisna varijabla funkcije .

Želimo li istaknuti skupove na kojima funkcija izvršava pridruživanje, pišemo . Želimo li istaknuti pravilo po kojem funkcija djeluje, pišemo .

Jednakost funkcija

Funkcije i su jednake, što zapisujemo sa , ako vrijedi:

  1. imaju jednake domene, tj. ;
  2. imaju jednako pravilo preslikavanja tj. .

Na primjer, funkcije i nisu jednake. One imaju jednako pravilo pridruživanja, jer, kada se kod skrati razlomak, dobijemo .
Međutim, nemaju jednaku domenu, jer funkcija nema vrijednost za . Dijeljenje s nulom nije definirano, pa je domena , skup realnih brojeva bez nule. Domena , čitav skup realnih brojeva.

Klasifikacija funkcija

Funkcija može imati mnogo svojstava, ali neka od važnijih su injektivnost, surjektivnost i bijektivnost.

Injekcija ili 1-1 preslikavanje je funkcija takva da ne postoje dva različita člana domene koja se preslikavaju u isti član kodomene. Za takvu funkciju kažemo da ima svojstvo injektivnosti i da je injektivna.
Matematički zapisujemo,
ili ekvivalentnu tvrdnju .

Slika funkcije f je skup članova iz kodomene na koje se preslikava neki član domene. Sliku funkcije f označavamo s .

Surjekcija ili preslikavanje na je funkcija čija slika je jednaka cijeloj kodomeni .
Drugim riječima, za svaki član kodomene postoje jedan ili više članova iz domene koji se u njega preslikavaju tj. ima bar jednu prasliku.
Matematički zapis: . Za takvu funkciju kažemo da ima svojstvo surjektivnosti i da je surjektivna.

Bijekcija ili 1 na 1 korespondencija ili obostrano jednoznačno preslikavanje je funkcija koja je injektivna i surjektivna. Kažemo još da je funkcija bijektivna i da ima svojstvo bijektivnosti.

Primjer bijekcije je funkcija identiteta, odnosno funkcija definirana s .

Graf funkcije

Graf funkcije

Graf funkcije jest skup točaka ravnine za koje vrijedi te čine krivulju. Formalnije, to je skup .

  1. Preusmjeri Predložak:Clear

Vidi još

Izvori

  1. Zvonimir Bujanović; Boris Muha (2018) (PDF). Elementarna matematika I. Zagreb: Prirodoslovno-matematički fakultet. https://web.archive.org/web/20191219215513/https://web.math.pmf.unizg.hr/nastava/em/EM1/materijali/em1-skripta.pdf