Toggle menu
309,2 tis.
63
18
534,4 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Bijekcija

Izvor: Hrvatska internetska enciklopedija
Bijektivna funkcija.

U matematici, za funkciju iz skupa X u skup Y kažemo da je bijektivna ako za svaki y u Y postoji točno jedan x u X takav da f(x) = y.

Drugim riječima, f je bijektivna je 1-1 korespondencija između tih skupova, tj. i 1-1 (injekcija) i na (surjekcija)[1]

Na primjer, funkcija sljedbenika sljed, definirana na skupu cijelih brojeva u , tako da svakom cijelom broju x pridjeljuje cijeli broj sljed(x) = x + 1. Za drugi primjer, neka se promotri funkcija sumraz koja svakom paru (x,y) realnih brojeva pridjeljuje par sumraz(x,y) = (x + y, x − y).

Bijektivna se funkcija još zove bijekcija ili obostrano jednoznačno preslikavanje ili permutacija. Potonji se termin češće koristi kad je X = Y. Valja uočiti da 1-1 funkcija nekim autorima znači 1-1 korespondencija (tj. bijekcija), a drugim autorima injekcija. Skup svih bijekcija iz Y u Y se označava kao XY.

Bijektivne funkcije imaju fundamentalnu ulogu u mnogim područjima matematike, poput definicije izomorfizma (i srodnih koncepata poput homeomorfizma i difeomorfizma), permutacijske grupe, projektivne ravnine, i mnogim drugim.

Kompozicija i inverzija

Funkcija f je bijektivna ako i samo ako je njezina inverzna relacija f −1 funkcija. U tom je slučaju f −1 također i bijekcija.

Kompozicija g o f dvaju bijekcija f XY i g YZ je bijekcija. Inverz od g o f je (g o f)−1 = (f −1o (g−1).

Bijekcija komponirana od injekcije i surjekcije.

S druge strane, ako je kompozicija g o f dvaju funkcija bijektivna, možemo samo reći da je f injektivna i g surjektivna.

Relacija f iz X u Y je bijektivna funkcija ako i samo ako postoji druga relacija g iz Y u X takva da je g o f identiteta na X, i f o g je identiteta na Y. Slijedi da skupovi imaju isti kardinalni broj

Izvori

  1. (Bilješka: uporaba pojma "1-1" za opis injektivne funkcije može biti problematično, s obzirom da ga neki autori shvaćaju u smislu 1-1 korespondencija, tj. bijektivna funkcija

Vidjeti također


Nedovršeni članak Bijekcija koji govori o matematici treba dopuniti. Dopunite ga prema pravilima uređivanja Hrvatske internetske enciklopedije.