Toggle menu
310,1 tis.
44
18
525,6 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Brojevni pravac

Izvor: Hrvatska internetska enciklopedija

Brojevni pravac je pravac na kojem je svakomu realnom broju (realni brojevi obuhvaćaju i racionalne i iracionalne broje) pridružena jedna jedina točka. Brojevni pravac služi za predočivanje brojeva i grafičko računanje njima. Na pravcu se najprije odabere točka O (lat. origo: ishodište), koja predočuje nulu, a zatim jedinična točka 1. Dužina od O do 1 predočuje jediničnu duljinu. Točkama na desnoj strani od O odgovaraju pozitivni realni brojevi, a na lijevoj strani negativni. Bilo kojemu realnom broju x odgovara točka x, tako da je dužina Ox (mjerena jediničnom duljinom) jednaka x jediničnih duljina. Između bilo koja dva realna broja postoji beskonačno mnogo racionalnih brojeva i iracionalnih brojeva. [1]

Brojevni pravac

Koordinatni sustavi

Podrobniji članak o temi: Koordinatni sustav

Koordinatni sustav je sustav koji omogućuje da se točke na krivulji, pravcu, plohi, u ravnini ili prostoru opišu s pomoću brojeva, takozvanim koordinatama. U matematici i drugim područjima postoji više različitih koordinatnih sustava:

Određivanje položaja s pomoću koordinata bilo je poznato već staroegipatskim graditeljima i babilonskim astronomima. Kartezijev koordinatni sustav uveo je René Descartes (latinizirano Renatus Cartesius). Descartesovo otkriće omogućilo je da se mnoga geometrijska tijela sustavno proučavaju znatno jačim metodama analitičke geometrije, algebre i analize; tako se na primjer krivulje proučavaju s pomoću jednadžbi koje zadovoljavaju koordinate njihovih točaka. Još je značajnije to što je u novije doba veza geometrije, algebre i analize omogućila da geometrijski zor, a time i mnogo plodnija intuicija, budu iskorišteni u rješavanju problema algebre i analize. Zato je Kartezijev koordinatni sustav temelj razvoja i uspjeha moderne linearne algebre (vektorski prostor), a zatim i mnogih njezinih nadgradnja (funkcionalne analize, diferencijalne geometrije, algebarske geometrije).

Izvori

  1. brojevni pravac, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, preuzeto 22. travnja 2020.