Toggle menu
309,3 tis.
59
18
530,1 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Algebarska geometrija

Izvor: Hrvatska internetska enciklopedija

Algebarska geometrija je grana matematike koja razvija geometrijsko pojmovlje i geometrijske metode u izučavanju algebarskih struktura, a posebno (unitalnih) komutativnih asocijativnih algebri. Analitička geometrija zasniva se na korespodenciji između točaka n-dimenzionalnog euklidskog prostora i n-torki realnih brojeva; na sličan način mogu se tzv. homogenim koordinatama koordinatizirati i projektivni prostori. Funkcije čiji su argumenti takve koordinate, indirektno su stoga funkcije točaka početnog prostora. Funkcije možemo množiti i zbrajati po točkama i tako definiramo komutativnu asocijativnu algebru s jedinicom. Obratno, poznavajući tu komutativnu algebru, možemo rekonstruirati prostor. Dakle postoji dualnost između prostora i algebri. Ako radimo s polinomijalnim funkcijama koordinata, tada je prostor koji je određen algebrom funkcija algebarski, u smislu da ne primjenjujemo matematičku analizu u definicijama kao što je slučaj s algebrama glatkih funkcija.

U algebarskoj geometriji definira se niz tipova prostora koji se lokalno opisuju algebrom koordinata: algebarski varijeteti, algebarske sheme, algebarski prostori, algebarski stogovi, derivirane algebarske sheme, derivirani algebarski stogovi itd.

Algebarski varijeteti (algebarske mnogostrukosti) dijele se na afine, projektivne, kvaziafine i kvaziprojektivne. Varijeteti su bili glavni predmet tzv. klasične algebarske geometrije, tj. problematike nastale prije zasnivanja teorije algebarskih shema u francuskoj matematičkoj školi Alexandra Grothendiecka kojeg smatramo najvećim algebarskim geometrom u povijesti.

U suvremeno doba razvija se i geometrija koja zasniva nove tipove prostora zasnovane na postuliranoj lokalnoj dualnosti s nekomutativnim algebrama, tzv. nekomutativna algebarska geometrija.