Razlika između inačica stranice »Indeks loma«
m (Bot: Automatska zamjena teksta (-{{Cite journal +{{Citiranje časopisa)) |
m (brisanje nepotrebnog teksta) |
||
Redak 1: | Redak 1: | ||
[[datoteka:Fénytörés.jpg|mini|desno|250px|[[Refrakcija]] ili [[lom svjetlosti]].]] | |||
[[datoteka:Snells law2.svg|mini|desno|250px|[[Snelliusov zakon]] se odnosi na dobro poznatu pojavu [[Refrakcija|lomljenja svjetlosti]] (refrakcije) na granici dvaju sredstava.]] | [[datoteka:Snells law2.svg|mini|desno|250px|[[Snelliusov zakon]] se odnosi na dobro poznatu pojavu [[Refrakcija|lomljenja svjetlosti]] (refrakcije) na granici dvaju sredstava.]] |
Trenutačna izmjena od 07:57, 8. ožujka 2022.
Indeks loma (oznaka n) je bezdimenzionalna fizikalna veličina koja opisuje međudjelovanje svjetlosti i optički prozirne tvari, a definirana je kao omjer brzine svjetlosti u vakuumu c i brzine svjetlosti u tvari v:
- [math]\displaystyle{ n = \frac{c}{v} }[/math]
Posljedica je promjene brzine svjetlosti promjena pravca njezina širenja pri prelasku iz jednoga optičkog sredstva u drugo. Što je indeks loma veći, veća je promjena pravca, odnosno veći je lom svjetlosti (refrakcija). Indeks loma može se s pomoću Snelliusova zakona odrediti iz geometrijskih odnosa kutova zraka svjetlosti prema površini sredstva u kojem dolazi do loma:
- [math]\displaystyle{ \frac{n_2}{n_1} = \frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2} }[/math]
gdje je: θ1 - upadni kut prema okomici na površinu sredstva, θ1 - kut loma, n1 - indeks loma optičkoga sredstva iz kojega svjetlost dolazi, a n2 - indeks loma optičkoga sredstva u koje svjetlost ulazi. Često se rabi relativni indeks loma, koji je jednak omjeru indeksa loma dvaju sredstava:
- [math]\displaystyle{ n_r = n_{21} = \frac{n_2}{n_1} }[/math]
Svjetlost se u nekoj tvari širi brzinom:
- [math]\displaystyle{ v={c\over\sqrt{\mu_r \cdot \varepsilon_r}} }[/math]
gdje je: εr - relativna dielektrična permitivnost tvari, a μr - relativna magnetska permeabilnost. Kako za relativnu magnetsku permeabilnost u optički prozirnom sredstvu vrijedi μr ≈ 1, proizlazi da indeks loma ovisi samo o relativnoj dielektričnoj permitivnosti:
- [math]\displaystyle{ n = \sqrt{ \varepsilon_r} }[/math]
Međutim, za mnoge tvari dolazi do odstupanja od toga izraza, zbog postojanja električnih dipola u dielektricima i ovisnosti relativne dielektrične permitivnosti o frekvenciji svjetlosti. [1]
Indeks loma materijala je broj koji pokazuje koliko puta je brzina svjetlosti u nekoj sredini manja od brzine u vakuumu. Lom je najočiglednija manifestacija promjene brzine svjetlosti elektromagnetnog zračenja pri prelasku iz jedne sredine u drugu.
Indeks loma zavisi od frekvencije svjetlosti što se eksperimentalno pokazuje u pojavi spektra kada se zrak polikromatske (bijele) svjetlosti propusti kroz prizmu.
Indeks loma je važna osobina materijala i mjeri se pomoću refraktometra.
Indeks loma nekih materijala
Brzina svjetlosti je u vakuumu c = 300 000 km/s, a brzina svjetlosti u vodi c2 = 3/4 c, pa je indeks loma za vodu:
- [math]\displaystyle{ n = \frac{c}{\frac{3}{4} \cdot c} = \frac{4}{3} = 1,33 }[/math]
Brzina svjetlosti u staklu je približno 2/3 brzine svjetlosti u vakuumu, pa je indeks loma za staklo 3/2 = 1,5. Indeks loma za led je 1,31, za kvarcno staklo od 1,7 do 1,9, za krunsko staklo 1,51. Što je indeks loma neke tvari veći, to se svjetlost u toj tvari jače lomi. Kad zraka svjetlosti prelazi iz vakuuma u bilo koje prozirno sredstvo, ona se lomi prema okomici. Svjetlost ima najveću brzinu u vakuumu, a manju u svim drugim prozirnim sredstvima. [2]
Materijal | λ (nm) | n | Ref. |
---|---|---|---|
Vakuum | 1 (po definiciji) | ||
Zrak kod standardnih uvjeta | 1,000277 | ||
Plinovi kod 0 °C i 1 atm | |||
Zemljina atmosfera | 589,29 | 1,000293 | [3] |
Ugljikov dioksid | 589,29 | 1,001 | [4][5][6] |
Helij | 58,.29 | 1,000036 | [3] |
Vodik | 589,29 | 1,000132 | [3] |
Tekućine kod 20 °C | |||
Arsenijev trisulfid i sumpor u metilenovom jodidu | 1,9 | [7] | |
Benzen | 589,29 | 1,501 | [3] |
Ugljikov disulfid | 589,29 | 1,628 | [3] |
Ugljikov tetraklorid | 589,29 | 1,461 | [3] |
Etanol (alkohol) | 589,29 | 1,361 | [3] |
Silicijevo ulje | 1,336–1,582 | [8] | |
Voda | 589,29 | 1,330 | [3] |
10% otopina glukoze u vodi | 589,29 | 1,3477 | [9] |
20% otopina glukoze u vodi | 589,29 | 1,3635 | [9] |
60% otopina glukoze u vodi | 589,29 | 1,4394 | [9] |
Krutine na sobnoj temperaturi | |||
Titanijev dioksid (rutil) | 589,29 | 2,614 | [10][11] |
Dijamant | 589,29 | 2,419 | [3] |
Silicijev karbid (moisanit) | 2,65–2,69 | ||
Stroncijev titanat | 589,29 | 2,41 | [12] |
Jantar | 589,29 | 1,55 | [3] |
Silicijevo staklo | 589,29 | 1,458 | [3][13] |
Natrijev klorid | 589,29 | 1,544 | [14] |
Ostali materijali | |||
Ukapljeni helij | 1,025 | ||
Vodeni led | 1,31 | ||
TFE/PDD (Teflon AF) | 1,315 | [15][16] | |
Kriolit | 1,338 | ||
Aceton | 1,36 | ||
Etanol | 1.36 | ||
Politetrafluoretilen (teflon) | 1,35–1,38 | [17] | |
Otopina šećera, 25% | 1.3723 | [18] | |
Rožnica (ljudska) | 1,373/1,380/1,401 | [19] | |
Leća (ljudska) | 1,386–1,406 | ||
Kerozin | 1,39 | ||
Otopina šećera, 50% | 1,4200 | [18] | |
Pyrex (borosilikatno staklo) | 1,470 | [20] | |
Glicerol | 1,4729 | ||
Otopina šećera, 75% | 1,4774 | [18] | |
Akrilno staklo | 1,490–1,492 | ||
Krunsko staklo (čisto)] | 1,50–1,54 | ||
Halit (kamena sol) | 1,516 | ||
Polietilentereftalat (PET) | 1,5750 | ||
Polikarbonati | 1,60 | ||
Flintsko staklo (čisto) | 1,60–1,62 | ||
Brom | 1,661 | ||
Flintsko staklo (nečisto) | 1,523–1,925 | ||
Safir | 1,762–1,778 | ||
Borov nitrid | 2-2,14 | [21] | |
Cirkonijev dioksid | 2,15–2,18 | [22] | |
Kalijev niobate (KNbO3) | 2,28 | ||
Cinkov oksid | 390 | 2,4 | |
Cinabarit (živin sulfid) | 3,02 | ||
Silicij | 1200 - 8500 | 3,42–3,48 | [23] |
Galij(III) fosfid | 3,5 | ||
Galij(III) arsenid | 3,927 | ||
Germanij | 3000 - 16000 | 4,05–4,01 | [24] |
Izvori
- ↑ indeks loma, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2016.
- ↑ Velimir Kruz: "Tehnička fizika za tehničke škole", "Školska knjiga" Zagreb, 1969.
- ↑ 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 Zajac, Alfred; Hecht, Eugene (18. ožujka 2003.). Optics, Fourth Edition. Pearson Higher Education. ISBN 978-0-321-18878-6
- ↑ Morgan, Joseph (1953). Introduction to Geometrical and Physical Optics. McGraw-Hill Book Company, INC.
- ↑ Hodgman, Charles D. (1957). Handbook of Chemistry and Physics. Chemical Rubber Publishing Co.
- ↑ Pedrotti, Frank L.; Pedrotti, Leno M.; Pedrotti, Leno S. (2007). Introduction to Optics, Third Edition. Pearson Prentice Hall. str. 221. ISBN 0-13-149933-5
- ↑ Meyrowitz, R, A compilation and classification of immersion media of high index of refraction, American Mineralogist 40: 398 (1955)
- ↑ "Silicone Fluids: Stable and Inert Material" (PDF). Gelest, Inc. 1998. http://www.gelest.com/goods/pdf/siliconefluids.pdf
- ↑ 9,0 9,1 9,2 Lide, David R. Lide, ed. (2001). CRC Handbook of Physics and Chemistry (82nd ed.). Cleveland, OH: The Chemical Rubber Company. ISBN 0-8493-0482-2
- ↑ Polyanskiy, Mikhail N.. "Optical constants of TiO2 (Titanium dioxide)". Refractive Index Database. http://refractiveindex.info/?group=CRYSTALS&material=TiO2
- ↑ Shannon, Robert D.; Shannon, Ruth C.; Medenbach, Olaf; Fischer, Reinhard X. (25. listopada 2002.). "Refractive Index and Dispersion of Fluorides and Oxides". J. Phys. Chem. Ref. Data (American Institute of Physics) 31 (4): 931–970. http://www.nist.gov/data/PDFfiles/jpcrd623.pdf
- ↑ Frye, Asa; French, R. H.; Bonnell, D. A. (2003). "Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate". Zeitschrift für Metallkunde 94 (3): 226. doi:10.3139/146.030226. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/optical_properties_and_electronic_structure_of_oxi.pdf Pristupljeno 11. srpnja 2014.
- ↑ Tan, G; Lemon, M.; Jones, D.; French, R. (2005). "Optical properties and London dispersion interaction of amorphous and crystalline {SiO2} determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry". Physical Review B 72 (20). Bibcode 2005PhRvB..72t5117T. doi:10.1103/PhysRevB.72.205117. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/optical_properties_and_london_dispersion_interacti.pdf Pristupljeno 11. srpnja 2014.
- ↑ Serway, Raymond A.; Faughn, Jerry S. (2003). College Physics, 6th Edition. Brooks/Cole. str. 692. ISBN 978-0-03-035114-3
- ↑ "Teflon AF". http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/properties.html Pristupljeno 14. listopada 2010.
- ↑ Yang, Min K. (srpnja 2008). "Optical properties of Teflon® {AF} amorphous fluoropolymers". Journal of Micro/Nano Lithography 7 (3): 033010. doi:10.1117/1.2965541. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/optical_properties_of_teflon_r_af_amorphous_fluo.pdf Pristupljeno 11. srpnja 2014.
- ↑ French, Roger H.; Rodriguez-Parada, J. M.; Yang, M. K. et al. (2009). "Optical properties of materials for concentrator photovoltaic systems". IEEE Photovoltaic Specialists Conference: 000394. doi:10.1109/PVSC.2009.5411657. ISBN 978-1-4244-2949-3. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/optical_properties_of_materials_for_concentrator_p.pdf Pristupljeno 11. srpnja 2014.
- ↑ 18,0 18,1 18,2 "Manual for Sugar Solution Prism". A/S S. Frederiksen. 22 studenoga. http://www.frederiksen.eu/fileadmin/user_upload/PDF/Export_Manuals/545920_AE_sugarsolution.pdf Pristupljeno 21. ožujka 2012.
- ↑ Patel, S; Marshall, J; Fitzke, FW 3rd. (Mar–Apr 1995). "Refractive index of the human corneal epithelium and stroma". J Refract Surg. 11 (2): 100–105. PMID 7634138
- ↑ University of Liverpool. "Absolute Refractive Index". Materials Teaching Educational Resources. MATTER Project. Inačica izvorne stranice arhivirana 12. listopada 2007.. http://www.matter.org.uk/schools/Content/Refraction/absolute.html Pristupljeno 18. listopada 2007.
- ↑ "Combat Boron Nitride". Saint Gobain. Inačica izvorne stranice arhivirana 18. veljače 2015.. http://www.bn.saint-gobain.com/uploadedFiles/SGbn/Documents/Solids/Combat-Solids-DS1.pdf Pristupljeno 12. lipnja 2016.
- ↑ French, Roger H.; Glass, S.; Ohuchi, F. et al. (1994). "Experimental and theoretical determination of the electronic structure and optical properties of three phases of {ZrO2}". Physical Review B 49 (8): 5133. Bibcode 1994PhRvB..49.5133F. doi:10.1103/PhysRevB.49.5133. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/experimental_and_theoretical_determination_of_the_0.pdf Pristupljeno 11. srpnja 2014.
- ↑ "Silicon". Pmoptics.com. http://www.pmoptics.com/silicon.html Pristupljeno 21. kolovoza 2014.
- ↑ "Germanium". Pmoptics.com. http://www.pmoptics.com/germanium.html Pristupljeno 21. kolovoza 2014.