- PREUSMJERI Predložak:Infookvir znanstvenik
David James Thouless (Bearsden, Škotska, 21. rujna 1934. – Cambridge, 6. travnja 2019.), britanski fizičar. Diplomirao (1955.) na Sveučilištu u Cambridgeu, doktorirao (1958.) na Sveučilištu Cornell u Ithaci (SAD). Radio je na Sveučilištu u Birminghamdu (od 1959. do 1961. i od 1965. do 1978.), na Sveučilištu u Cambridgeu (od 1961. do 1965.), Sveučilištu Yale u SAD-u (od 1979. do 1980.), Sveučilištu Washington u Seattleu u SAD-u (od 1980. do 2003.). Bavio se suprafluidnošću i faznim prijelazima dvodimenzionalnih materijala. Topološki opisao fazni prijelaz nestajanja parova vrtloga u suprafluidu s povećanjem temperature (Kosterlitz-Thoulesseov prijelaz), topološki objasnio kvantni Hallov učinak kad se vodljivi sloj nalazi između dvaju poluvodiča na temperaturi bliskoj apsolutnoj nuli. Za teorijsko otkriće topoloških faznih prijelaza i topoloških faza tvari s D. Haldaneom i J. M. Kosterlitzom dobio Nobelovu nagradu za fiziku (2016.). Bio je član Kraljevskog društva (eng. Royal Society) od 1979. [1]
Supratekućina ili suprafluidnost
Suprafluidnost je stanje ukapljenoga helija koje se očituje gibanjem tekućine bez trenja na ekstremno niskoj temperaturi uz očuvana adhezijska svojstva. Otkrio ju je 1937. Pjotr Leonidovič Kapica, a neovisno o njem otkrili su ju iste godine Donald Misener i John Frank Allen proučavajući pojave do kojih dolazi kada se helij ohladi na temperaturu nižu od 2.17 K. Ako se na primjer u suprafluidni helij djelomično uroni prazna posuda, po njezinim će se stijenkama u tankom sloju (do 30 nm) helij penjati i spuštati u posudu sve dok se razina helija u posudi ne izjednači s razinom okolnoga helija; ako se kapilarna cjevčica jednim krajem uroni u suprafluidni helij i osvijetli, na njezinu će gornjem kraju istjecati helij poput vodoskoka visoka do 10 centimetara (takozvani učinak vodoskoka). Danska fizičarka Lena Hau uspjela je 1999. u suprafluidu usporiti svjetlost do brzine 17 m/s, a 2001. uspjela ju je zaustaviti.
Helijevi izotopi 4He i 3He imaju različita suprafluidna stanja, a zbog različitoga broja neutrona u atomskoj jezgri (različitog spina) pripadaju različitim statistikama (kvantna statistika). Izotop helija 4He, sa spinom 0, je bozon, podvrgava se Bose-Einsteinovoj statististici, ukapljuje se na 4.2 K i prelazi u suprafluidno stanje na temperaturi 2.17 K, a izotop 3He, sa spinom 1/2, podvrgava se Fermi-Diracovoj statististici, ukapljuje se na 3.19 K, postaje suprafluidan na temperaturi 2.6 mK i ima dva različita suprafluidna stanja.
Teorijski doprinos tumačenju suprafluidnosti helijeva izotopa 4He prvi su dali Laszlo Tisza i Lev Davidovič Landau 1941. u dvokomponentnom modelu s kvazičesticama fononima i rotonima, a kvantnomehanički ju je nadogradio Richard Feynman. Objašnjenje suprafluidnosti izotopa 3He uklopilo se u poopćenu BCS-teoriju (supravodljivost). Postizanje suprafluidnosti još je vrlo skupo zbog potrebnih izuzetno niskih temperatura i iznimne čistoće helija, pa se primjenjuje uglavnom u znanstvenim istraživanjima, na primjer pri proučavanju pojedinačnih molekula plina u suprafluidu, gdje se one zbog nedostatka trenja gibaju potpuno slobodno; za održavanje osjetljivih mjernih instrumenata ili dijelova instrumenata na niskoj temperaturi (u astronomskom satelitu za opažanje infracrvenoga zračenja, IRAS, koji je lansiran 1983., s pomoću 720 litara suprafluidnoga helija instrumenti se čuvaju na temperaturi 1.6 K). U širem smislu stanje elektrona u supravodiču također je suprafluidno.
Fazni prijelazi
Fazni prijelazi su promjene stanja pojedine faze (elementarne, spoja, eutektičke smjese, peritektičkog spoja i slično) pri promjeni temperature. Razlikuju se fazni prijelazi I. vrste, kod kojih su u stanju ravnoteže slobodne entalpije u obje faze jednake po vrijednosti, ali se pritom entropija i volumen skokovito mijenjaju, i fazni prijelazi II. vrste, kod kojih se u stanju ravnoteže ne mijenjaju ni entalpija, ni entropija, ni volumen. U fazne prijelaze I. vrste spadaju na primjer taljenje, isparavanje i sublimacija, a u fazne prijelaze II. vrste prijelazi kod kojih na primjer tvari gube feromagnetička svojstva (Curiejeva temperatura), pojava supravodljivosti, procesi razlaganja i stvaranja međumetalnih spojeva u čvrstoj fazi i tako dalje.
Hallov učinak
Hallov učinak ili Hallov efekt (po E. H. Hallu koji ga je uočio 1879.) je pojava u tankoj metalnoj ili poluvodičkoj pločici kojom teče električna struja gustoće Jx, pod djelovanjem okomitoga magnetskoga polja indukcije Bz, stvaranja transverzalnoga električnoga polja jakosti:
(RH je Hallova konstanta ili Hallov otpor) i poprečnoga električnoga napona. Električna struja, magnetsko polje i električno polje međusobno su okomiti i, ako tvore desni koordinatni sustav, Hallov učinak je normalan (konstanta RH je negativna). U obratnom slučaju (konstanta RH je pozitivna) učinak je anomalan. Hallov je učinak jači za poluvodiče, a slabiji za električne vodiče. Objašnjenje anomalnoga Hallova učinka bila je jedna od najvećih teškoća klasične elektromagnetske teorije. Protumačila ga je tek kvantna teorija čvrstih tijela.