Avogadrov broj

Izvor: Hrvatska internetska enciklopedija
Skoči na:orijentacija, traži
Amedeo Avogadro je 1811. prvi uočio da je broj čestica plina pri određenom tlaku i temperaturi razmjeran obujmu plina neovisno o vrsti plina.

Avogadrov broj ili Avogadrova konstanta je prirodna konstanta koja određuje broj čestica (molekula, atoma ili iona) u jednom molu neke tvari. Jednaka je količniku broja čestica Nkoličine tvari n a označuje se s L ili NA dok je jedinica mol−1:

[math]\displaystyle{ L=\frac{N}{n} \qquad ili \qquad L=\frac{N \cdot M}{m} }[/math]

gdje je: L - Avogadrova konstanta, N - brojnost jedinki, n - množina tvari, M - molna masa, m - masa tvari.

Drugim riječima molna masa M neke tvari uvijek sadrži Avogadrov broj jedinki (atoma, molekula, formulskih jedinki).

Avogadrova konstanta iznosi:[math]\displaystyle{ \qquad L=6,022 1412 \cdot 10^{23}\ \mathrm{mol}^{-1} }[/math]

Avogadrov broj nam kazuje na primjer koliko ima atoma ugljika u 1 molu ugljika. 1 mol = 12,0111 g ugljika. Dakle u 12,0111 g ugljika ima 6,0221412 x 1023 atoma ugljika.

Razlika između Avogadrove konstante i Avogadrova broja je to da Avogadrova konstanta ima mjernu jedinicu mol−1.

Povijest

Konstanta je nazvana po Amedeu Avogadru, koji je 1811. prvi uočio da je broj čestica plina (molekula) pri određenom tlaku i temperaturi razmjeran obujmu (volumenu plina) neovisno o vrsti plina. Prvi je taj broj izračunao J. Loschmidt 1865. iz kinetičke teorije plinova i dobio vrijednost 6,09∙1023. Lord Rayleigh 1890. izračunao je broj iz raspršenja Sunčeva zračenja. Točniji rezutat je dobio R. A. Millikan 1909. iz naboja elektrona (točnost ±1%). Iste godine broj je izračunao J. Perrin iz sedimentacije koloidnih čestica u gravitacijskom polju. Danas je najtočnija metoda difrakcije rendgenskih zraka na kristalima.[1][2]

Avogadrov zakon

Vista-xmag.pngPodrobniji članak o temi: Avogadrov zakon

Avogadrov zakon je jedan od plinskih zakona. Nazvan je prema Amedeu Avogadru koji je 1811. iznio pretpostavku da se u jednakim volumenima svih plinova pri istim uvjetima temperature i tlaka nalazi jednak broj čestica -molekula. Dakle, broj molekula u određenom volumenu plina ne ovisi o njihovoj veličini ili masi. Zbog toga se došlo do pojma molarne mase, a to je masa 1 mola neke supstance, to jest masa čestica te supstance puta Avogadrov broj. Avogadrov broj kazuje koliko ima atoma, molekula ili formulskih jedinki u 1 molu neke tvari. Taj broj je 6,022045 x 1023. Mol je ona množina tvari u sustavu koji sadrži toliko elementarnih jedinki tvari koliko ima atoma u 0,012 kg izotopa ugljika 12C.[3]

Prema Avogadru najsitnija čestica plina je molekula. To je bila hrabra pretpostavka za to doba i pala je u zaborav do 1858.g. kad je Stanislao Cannizzaro obnovio Avogadrovu hipotezu. Od te godine hipoteza je općenito prihvaćena i naziva se Avogadrov zakon. Izuzetak čine plemeniti plinovi koji zbog svoje stabilne elektronske konfiguracije ne tvore molekule, već se nalaze u obliku pojedinačnih atoma. Na primjer, molekule vodika i dušika, u jednakom obujmu, imaju jednak broj molekula, ako se nalaze pod jednakim tlakom i temperaturom, bez obzira što su molekule dušika 14 puta teže od molekula vodika. U primjeni, stvarni plinovi vrlo malo odstupaju od ponašanja idealnih plinova, pa se i plinski zakoni mogu koristiti za veliku većinu primjena.

Matematičko određivanje

Avogadrov zakon se matematički određuje kao:

[math]\displaystyle{ \frac{V}{n} = k }[/math]

gdje je :

Vobujam plina (m3)
nmnožina tvari ili broj molekula (ili atoma) plina
k – proporcionalna fizikalna konstanta

Najvažniji rezultat Avogadrovog zakona je određivanje opće plinske konstante za idealne plinove, koja ima jednaku vrijednost za sve plinove. To znači da vrijedi:

[math]\displaystyle{ \frac{p_1\cdot V_1}{T_1\cdot n_1}=\frac{p_2\cdot V_2}{T_2 \cdot n_2} = konstantno }[/math]

gdje je :

ptlak plina (Pa)
Tapsolutna temperatura plina (K)

Jednadžba stanja idealnih plinova

Ako se Avogadrov zakon preuredi, i za fizikalnu konstantu uvedemo oznaku R, dobijemo:

[math]\displaystyle{ p \cdot V = n \cdot R \cdot T \qquad \qquad R=8,314 \ \mathrm {JK^{-1}mol^{-1}} \quad plinska \ konstanta }[/math]

Gornja jednakost je poznata kao jednadžba stanja idealnog plina.

Obujam jednog mola plina - molni volumen

Za standardni tlak 101,325 kPa i temperaturu 273,15 K (0 °C), obujam jednog mola idealnog plina iznosi:

[math]\displaystyle{ V_m = \frac{V}{n} = \frac{R \cdot T}{p}= \mathrm {\frac{8,314\ JK^{-1}mol^{-1}\cdot 273,15K}{101,325\cdot10^3\ Pa} = 22,4 \ dm^3mol^{-1}} }[/math]

Obujam jednog mola idealnog plina iznosi 22,4 dm3 ili 22,4 litre i naziva se molni volumen.

Izvori

  1. Avogadrova konstanta (Avogadrov broj), [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2015.
  2. Filipović, Lipanović: "Opća i anorganska kemija", 9. izd., Školska knjiga, Zagreb, 1995., ISBN 953-0-30907-4, str.87-88
  3. Amadeo Avogadro: "Essai d'une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons", journal = Journal de Physique, 1810. English translation