Mengerova spužva

Izvor: Hrvatska internetska enciklopedija
Prijeđi na navigaciju Prijeđi na pretraživanje
Mengerova spužva

Mengerova spužva je fraktal kojeg je opisao austrijski matematičar Karl Menger 1926. godine. To je trodimenzionalni analogon tepihu Sierpińskog. Često se naziva Sierpiński-Mengerovom spužvom ili, netočno, samo spužvom Sierpińskog. Svaka strana Mengerove spužve je tepih Sierpińskog, a svaka dijagonala Cantorov skup. Fraktalna joj je dimenzija .


Konstrukcija[uredi]

Počinje se s kockom (nulta iteracija) koja se podijeli na 27 jednakih kocaka (duljine stranice 1/3 početne). Nakon toga oduzme se 7 kocaka: središnja i 6 u središtima strana početne kocke (prva iteracija). Postupak se ponovi s preostalih 20 kocaka. Mengerova se spužva dobije kad broj iteracija teži u beskonačno. Na slici ispod su prikazane nulta i prve tri iteracije.


Kao sustav iteriranih funkcija (IFS)[uredi]

Moguće ju je načiniti pomoću 20 transformacija vjerojatnosti po 5%. Dvije su napisane u tablici, ostale se mogu dobiti analogijom iz transformacijâ za tepih Sierpińskog.

vjerojatnost transformacije
5%


5%



itd.


Vidi još[uredi]

Logotip Zajedničkog poslužitelja
Logotip Zajedničkog poslužitelja
Na Zajedničkom poslužitelju postoje datoteke na temu: Mengerova spužva.