Asocijativni bialgebroid
U matematici, ako je asocijativna algebra nad nekim polje k, tada je lijevi asocijativni -bialgebroid druga asocijativna k-algebra zajedno sa slijedećim preslikanjima:[1] homomorfizam algebri kojeg nazivamo preslikavanjem izvora, homomorfizam algebri kojeg nazivamo preslikavenjem ponora, koji su takvi da slike od i komutiraju u , inducirajući dakle strukturu -bimodula na određenog pravilom za sve ; nadalje morfizam -bimodula , za kojeg zahtijevamo da je kounitalno i koasocijativno komnoženje na objektu u monoidalnoj kategoriju -bimodula s monoidalnim produktom . Nadalje, za pripadna kojedinicu tog komnoženja zahtijevamo da je lijevi kokarakter (u drugom jeziku, to znači da je preslikavanja lijevo unitalno djelovanje koje proširuje množenje (gledano kao lijevo regularno djelovanje) duž ). Nadalje, tražimo usuglašenost među komnoženjem i množenjima algebre i njenog tenzorskog kvadrata . Ako je algebra nekomutativna, tenzorski produkt nad Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} nije algebra, dakle traženje uvjete tipa da je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta:H\to H\otimes_L H} morfizam k-algebri, kako se to radi kod bialgebri, nema smisla. Umjesto toga, zahtijevamo da Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\otimes_L H} ima k-potprostor Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} koji sadržava sliku preslikavanja Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta} i ima dobro definirano množenje inducirano množenjem na Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\otimes H} uzduž projekcije na Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\otimes_L H} . Zahtijevamo, nadalje, da je kosuženje (korestrikcija) Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta|^T :H\to T} homomorfizam unitalnih algebri. Ako je homomorfizam za jedan takav potprostor Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} , tada je za svaki, i tada možemo napraviti kanonski izbor za Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} , naime Takeuchijev umnožak Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\times_L H\subset H\otimes_L H} ,[2] koji je u svakom slučaju algebra s množenjem induciranim uzduž projekcije s Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\otimes H} . Proizlazi da je dovoljno provjeriti da je slika od Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta} sadržana u Takeuchijevom umnošku i da je kosuženje komnoženja na njega homomorfizam algebri. Brzeziński i Militaru su pokazali da je pojam asocijativnog bialgebroida ekvivalentan pojmu Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times_L} -algebre kojeg je uveo Takeuchi još 1977[3].
Pojam asocijativnog bialgebroida je poopćenje pojma k-bialgebre gdje je komutativni bazni prsten zamijenjen nekomutativnom k-algebrom Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} . Hopfov algebroid nad Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} je uređeni par asocijativnog bialgebroida s totalnom algebrom Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} i antiendomorfizma algebre Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} koji zadovoljava neke dodatne uvjete (za razliku od slučaja asocijativnih bialgebroida gdje su osnovnee varijante definicije u literaturi zapravo ekvivalentne, u literaturi se promatra više sličnih ali bitno neekvivalentnih varijanti pojma Hopfovog algebroida).
Naziv bialgebroid je uvela J-H. Lu.[4] Često izostavljamo pomen asocijativnosti u nazivu, čija glavna funkcija je razlikovanje od Liejevih bialgebroida, koje također često zovemo naprosto bialgebroidima. Asocijativni bialgebroidi se pojavljuju u dvije kiralne verzije, lijevoj i desnoj. Dualan je pojam bikoalgebroida[5].
References
- PREUSMJERI Predložak:Izvori
Vanjske poveznice
- nLab, Associative bialgebroid, https://ncatlab.org/nlab/show/bialgebroid
- Stjepan Meljanac, Zoran Škoda, Martina Stojić, Lie algebra type noncommutative phase spaces are Hopf algebroids, Lett. Math. Phys. 107:3, 475–503 (2017) http://dx.doi.org/10.1007/s11005-016-0908-9 http://arxiv.org/abs/1409.8188
- ↑ Böhm, Gabriella (2008), "Hopf Algebroids", Handbook of algebra, arXiv:0805.3806
- ↑ Brzezinski, Tomasz; Militaru, Gigel (2000), Bialgebroids, Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times_A} -bialgebras and duality, arXiv:math.QA/0012164
- ↑ M. Takeuchi, Groups of algebras over Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \times \bar{A}} , J. Math. Soc. Japan 29, 459–492, 1977
- ↑ Lu, Jiang-HUA (1996), "Hopf Algebroids and Quantum Groupoids", International Journal of Mathematics 07: 47–70, arXiv:q-alg/9505024, doi:10.1142/S0129167X96000050, http://www.ams.org/mathscinet-getitem?mr=95e:16037
- ↑ Imre Bálint, Scalar extension of bicoalgebroids, Appl. Categor. Struct. 16, 29–55 (2008)