Toggle menu
310,1 tis.
50
18
525,6 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Predznak

Izvor: Hrvatska internetska enciklopedija
Plus (zeleno) i minus (crveno)

U matematici, predznak broja je svojstvo realnog broja po kojem razlikujemo pozitivne od negativnih. Pozitivni brojevi imaju pozitivan ili ječni predznak + dok negativni brojevi imaju negativan ili niječni predznak -.[1] Pozitivan predznak suprotan je negativnom predznaku. Predznak + ne pišemo. Broj nula nema predznak. Broju mijenjamo predznak množeći ga s -1.

Kompleksni brojevi također mogu imati predznak. Tako je npr. i pozitivan, a -i ili --1 negativan broj.

Dva su broja suprotna ukoliko im je apsolutna vrijednost jednaka, ali imaju suprotne predznake. Oni su jednako udaljeni od nule. Zbroj dva suprotna broja jednak je nuli. Broj nula sam je sebi suprotan.

Funkcija

Funkcija koja vraća predznak broja:

Kut rotacije u polarnom koordinatnom sustavu ima pozitivan ili negativan predznak, ovisno o smjeru rotacije

Primjena predznaka

Kuta rotacije

Ponekad uz kut pišemo predznak. Na primjer, kut rotacije ima pozitivan predznak ako predmet rotiramo u smjeru suprotnom od smjera kazaljke na satu, a negativan predznak ukoliko predmet rotiramo u smjeru kazaljke na satu.[2] Rotacija za +α ekvivalentna je rotaciji za -(360°k - α) gdje je k ∈ ℤ.[3][4][5]

Promjene

Kad se fizička veličina x mijenja s vremenom, promjena vrijednosti x se obično definira kao:

gdje je Δx promjena, x krajnja vrijednost, a x0 početna vrijednost fizičke veličine. Ako se s vremenom vrijednost Δx povećava, promjena je pozitivna, inače je negativna.

U računarstvu

U računarstvu, cjelobrojna vrijednost može biti signed i unsigned. Dok unsigned može biti samo prirodni broj ili nula, potonje može sadržavati i negativni predznak. U signed varijabli jedan bit pamti predznak broja. Deklariranjem unsigned varijable, taj bit koristi se da bi povećao maksimalnu vrijednost broja. Npr. 8-bitni signed može pamtiti brojeve u intervalu [-128, 127] dok 8-bitni unsigned pamti brojeve u intervalu [0, 255].

U programskom jeziku C cjelobrojne varijable zadano su signed.

Prevoditelji često javljaju upozorenje prilikom uspoređivanja signed i unsigned ili castanja jednoga u drugi. To ponekad može biti opasno jer im se razlikuju intervali u kojima mogu pamtiti brojeve.

Najznačajniji bit
0 1 1 1 1 1 1 1 = 127
0 1 1 1 1 1 1 0 = 126
0 0 0 0 0 0 1 0 = 2
0 0 0 0 0 0 0 1 = 1
0 0 0 0 0 0 0 0 = 0
1 1 1 1 1 1 1 1 = −1
1 1 1 1 1 1 1 0 = −2
1 0 0 0 0 0 0 1 = −127
1 0 0 0 0 0 0 0 = −128
Računala najčešće koriste dvokomplementni oblik za predstavljanje predznaka[6]

Zapis u memoriji računala

Računala koriste bitove pa ne mogu pamtiti plus ili minus. Zato možemo plusu pridružiti 1, a minusu 0. Ostali bitovi pamtit će apsolutnu vrijednost broja. Takav način prikaza broja zove se zapis broja pomoću predznaka i apsolutne vrijednosti.[6]

Dvojni komplement

Podrobniji članak o temi: Dvojni komplement

Dvojni komplement, dvokomplement ili drugi komplement[6][7] je matematička operacija na brojevima. Dvojni komplement nekog broja x jednak je razlici broja x od a n gdje je a baza brojevnog sustava, a n broj znamenaka broja x. Drugim riječima, dvojni komplement broja x dobijemo tako da broju x sve znamenke bi promijenimo u razliku (a - 1) - bi, gdje je a baza brojevnog sustava, a zatim mu pribrojimo 1. Dvokomplement jednak je komplementu uvećanom za 1.[6]

U registar duljine n bitova možemo zapisati 2n distinktnih cijelih brojeva, od -2n − 1 do 2n − 1 − 1.[6] U računarstvu, dvojni komplement se koristi za negaciju signed broja. Drugi način da izračunamo dvojni komplement binarnog broja x je da promijenimo sve bitove u broju x koji su lijevo od najdesnije jedinice. Pomoću dvojnog komplementa možemo dobiti i posljednju jedinicu nekog broja x u binarnom zapisu. Ona je x & -x ako je & bitovna operacija I, a - je dvojni komplement broja x. Npr. za broj 12 = 1100(2) ćemo dobiti 4. To se koristi u logaritamskoj strukturi.[8]

Zapis brojeva u računalu pomoću predznaka i apsolutne vrijednosti
Prikaz u
registru
Unsigned
vrijednost
Dekadska
vrijednost
0111 1111 127  127 
0111 1110 126  126 
0000 0010 2  2 
0000 0001 1  1 
0000 0000 0  0 
1111 1111 255  −0 
1111 1110 254  −1 
1000 0010 130  −125 
1000 0001 129  −126 
1000 0000 128  −127 

Komplement

Komplement znamenke dobivamo da vrijednost znamenke oduzmemo od 9. Komplement ~ (lat. complementum – dopuna, upotpunjivanje) nekog broja je vrijednost dobivena komplementom svake znamenke. U registru od n bitova možemo zapisati vrijednosti od −(2n − 1 − 1) do 2n − 1 − 1 jer imamo dvije moguće nule. Zapis pomoću predznaka i apsolutne vrijednosti rijetko se koristi zbog ofseta od -1 prilikom binarnog zbrajanja. U svakom brojevnom sustavu, komplement broja jednak je dvokomplementu broja umanjenom za 1.[6]

U sustavu dvojnog komplementa u parnoj brojevnoj bazi, broj x i njemu komplement ~x imaju sve znamenke različite.

Vidi još

Izvori

  1. "Predznak broja". Hrvatsko strukovno nazivlje. Institut za hrvatski jezik i jezikoslovlje. http://struna.ihjj.hr/naziv/predznak-broja/32632/ Pristupljeno 29. srpnja 2016. 
  2. "Rotacija". Eduvizija. http://www.eduvizija.hr/portal/lekcija/8-razred-matematika-rotacija Pristupljeno 25. svibnja 2016. 
  3. "Mathwords: Coterminal Angles" (engl.). Mathwords. http://www.mathwords.com/c/coterminal.htm Pristupljeno 21. veljače 2016. 
  4. "Coterminal Angle Calculator" (engl.). TutorVista. http://calculator.tutorvista.com/coterminal-angle-calculator.html Pristupljeno 3. srpnja 2016. 
  5. "Find Coterminal Angles" (engl.). Free Mathematics Tutorials. http://www.analyzemath.com/Angle/coterminal_angle.html Pristupljeno veljača 2015. 
  6. 6,0 6,1 6,2 6,3 6,4 6,5 Brođanac P., Budin L., Markučić Z., Perić S. Informatika 1: udžbenik za 1. razred prirodoslovno-matematičke gimnazije, 2. izd., Školska knjiga, Zagreb, 2015., ISBN 978-953-0-22063-8, str. 97. – 101.
  7. Radić, Drago. "Binarna aritmetika - II komplement". "Informatička abeceda". Split-Hrvatska. http://www.informatika.buzdo.com/s070-drugi-komplement.htm Pristupljeno 26. srpnja 2016. 
  8. "Isolating the last digit" (engl.). Binary Indexed Trees. TopCoder. https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/#lastdigit Pristupljeno 29. srpnja 2016.