Jedinična, brojevna ili trigonometrijska kružnica definirana je kao kružnica sa središtem u ishodištu koordinatnog sustava (0, 0) i polumjerom odnosno radijusom 1. Jedinična kružnica siječe x-os u točkama (-1,0) i (1,0) i y-os u točkama (0, 1) i (0, -1).
Ortogonalna projekcija točke na x-os je , a na y-os . Dužine i su katete pravokutnog trokuta čije su dužine x i y.
je horizontalna, a vertikalna dužina. Kut je u standardnom položaju. Prema definicijama funkcija sinus i kosinus dobivamo sljedeće jednakosti:
Ako su (x, y) točke na kružnici u prvom kvadrantu, onda su x i y katete pravokutnog trokuta (isječci na x i y osi, respektivno) čija je hipotenuza (polumjer) 1. Prema Pitagorinom poučku x i y zadovoljavaju jednadžbu
Budući da uvijek vrijedi , prethodna jednadžba vrijedi za sve točke (x, y) na jediničnoj kružnici, a ne samo za prvi kvadrant.
Trigonometrijske funkcije
Uz pomoć trigonometrijskih funkcija kod pravokutnih trokuta mogu se prikazati odnosi između koordinata i kutova na jediničnoj kružnici. Trigonometrijske funkcije sinus i kosinus mogu se na jediničnoj kružnici definirati na sljedeći način: ako je (x, y) točka na jediničnoj kružnici i ako dužina od ishodišta do točke (x, y) čini kut t s pozitivnim dijelom apscise (u smjeru suprotnim od smjera kazaljke na satu), tada vrijedi:
Jednadžba daje poznatu relaciju
α | sin α | cos α | tg α | cotg α | |
---|---|---|---|---|---|
1. kvadrant | 0–90° | + | + | + | + |
2. kvadrant | 90–180° | + | − | − | − |
3. kvadrant | 180–270° | − | − | + | + |
4. kvadrant | 270–360° | − | + | − | − |
Jedinična kružnica također daje uvid da su sinus i kosinus periodične funkcije jednakostima:
za svaki cijeli broj k.
Ove jednakosti polaze od činjenice da x i y koordinate točke na krugu ostaju iste ako kut t napravi bilo koji broj okreta po kružnici (1 okret = 360° = 2π radijana).
Pri radu s pravokutnim trokutima, sinus i kosinus, kao i ostale trigonometrijske funkcije imaju smisla samo ako je kut veći od 0 i manji od . Koristeći jediničnu kružnicu, ove funkcije dobivaju smisao za bilo koju realnu vrijednost kuta. Ako je točka A točka jedinične kružnice onda su njene koordinate
Druge točke su određene koordinatama
Zamjenom dobivamo Pitagorine trojke .
Kompleksna ravnina
U kompleksnoj ravnini jedinična kružnica predstavljena je skupom
Jedinična kružnica pojavljuje se i u polarnom rastavu kompleksnog broja:
Faktor eiφ koji opisuje fazu broja nalazi se na jediničnoj kružnici.
Ta kružnica ima i druga korisna svojstva. Primjerice, bilo koja realna potencija broja na jediničnoj kružnici također se nalazi na jediničnoj kružnici, što olaškava potenciranje kompleksnih brojeva: