Toggle menu
309,3 tis.
59
18
530,1 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Jedinična kružnica

Izvor: Hrvatska internetska enciklopedija
Inačica 256418 od 26. listopad 2021. u 00:10 koju je unio WikiSysop (razgovor | doprinosi) (Bot: Automatski unos stranica)
(razl) ←Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)
Koordinate na jediničnoj kružnici

Jedinična, brojevna ili trigonometrijska kružnica definirana je kao kružnica sa središtem u ishodištu koordinatnog sustava (0, 0) i polumjerom odnosno radijusom 1. Jedinična kružnica siječe x-os u točkama (-1,0) i (1,0) i y-os u točkama (0, 1) i (0, -1).

Ortogonalna projekcija točke na x-os je , a na y-os . Dužine i su katete pravokutnog trokuta čije su dužine x i y.

je horizontalna, a vertikalna dužina. Kut  je u standardnom položaju. Prema definicijama funkcija sinus i kosinus dobivamo sljedeće jednakosti:

Ako su (x, y) točke na kružnici u prvom kvadrantu, onda su x i y katete pravokutnog trokuta (isječci na x i y osi, respektivno) čija je hipotenuza (polumjer) 1. Prema Pitagorinom poučku x i y zadovoljavaju jednadžbu

Budući da uvijek vrijedi , prethodna jednadžba vrijedi za sve točke (x, y) na jediničnoj kružnici, a ne samo za prvi kvadrant.

Trigonometrijske funkcije

Trigonometrijske funkcije na jediničnoj kružnici (Animacija)

Uz pomoć trigonometrijskih funkcija kod pravokutnih trokuta mogu se prikazati odnosi između koordinata i kutova na jediničnoj kružnici. Trigonometrijske funkcije sinus i kosinus mogu se na jediničnoj kružnici definirati na sljedeći način: ako je (x, y) točka na jediničnoj kružnici i ako dužina od ishodišta do točke (x, y) čini kut t s pozitivnim dijelom apscise (u smjeru suprotnim od smjera kazaljke na satu), tada vrijedi:

Jednadžba  daje poznatu relaciju

α sin α cos α tg α cotg α
1. kvadrant 0–90° + + + +
2. kvadrant 90–180° +
3. kvadrant 180–270° + +
4. kvadrant 270–360° +

Jedinična kružnica također daje uvid da su sinus i kosinus periodične funkcije jednakostima:

za svaki cijeli broj k.

Ove jednakosti polaze od činjenice da x i y koordinate točke na krugu ostaju iste ako kut t napravi bilo koji broj okreta po kružnici (1 okret = 360° = 2π radijana).

Pri radu s pravokutnim trokutima, sinus i kosinus, kao i ostale trigonometrijske funkcije imaju smisla samo ako je kut veći od 0 i manji od . Koristeći jediničnu kružnicu, ove funkcije dobivaju smisao za bilo koju realnu vrijednost kuta. Ako je točka A točka jedinične kružnice onda su njene koordinate

Druge točke su određene koordinatama

Zamjenom dobivamo Pitagorine trojke .

Kompleksna ravnina

U kompleksnoj ravnini jedinična kružnica predstavljena je skupom

Jedinična kružnica pojavljuje se i u polarnom rastavu kompleksnog broja:

Faktor eiφ koji opisuje fazu broja nalazi se na jediničnoj kružnici.

Ta kružnica ima i druga korisna svojstva. Primjerice, bilo koja realna potencija broja na jediničnoj kružnici također se nalazi na jediničnoj kružnici, što olaškava potenciranje kompleksnih brojeva:

Vidi i

Izvori