Toggle menu
310,1 tis.
36
18
525,5 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Hiperbola (krivulja)

Izvor: Hrvatska internetska enciklopedija

Hiperbola ili kosatica[1] je vrsta krivulje.

Uz zadane dvije točke u ravnini, točke F1 i F2, te duljinu 2a koja simetrično leži na dužini F1F2 uz uvjet 2a<d(F1, F2), tada hiperbolom s fokusima (žarištima) u točkama F1 i F2 i velikom osi 2a nazivamo skup točaka u ravnini za koje je apsolutna vrijednost razlike udaljenosti do fokusa F1 i F2 jednak 2a.

Smjestimo li središte hiperbole u središte koordinatnog sustava, tada udaljenost /OF1/=/OF2/ nazivamo linearnim ekscentricitetom hiperbole. Numerički ekscentricitet hiperbole određen je kao

Jednadžba hiperbole

Jednadžba hiperbole sa središtem u S(0, 0)

Hiperbola sa središtem u ishodištu koordinatnog sustava, realnom poluosi 2a i imaginarnom osi 2b određena je jednadžbom

koja se može prikazati i u segmentnom obliku

Jednadžba hiperbole sa središtem u S(p, q)

Hiperbola sa središtem točki S određenoj koordinatama S(p, q), realnom osi 2a i imaginarnom osi 2b određena je jednadžbom

koja se može prikazati i u segmentnom obliku

Tangenta hiperbole

Tangenta hiperbole sa središtem u S(0, 0)

Tangenta hiperbole koja ima središte u ishodištu koordinatnog sustava i koja prolazi točkom T na hiperboli, određena je koordinatama točke T i koeficijentom smjera tangente. Diferencirajući jednadžbu hiperbole nalazimo da je

odakle slijedi da je

te da je jednadžba tangente na hiperbolu

odakle se sređivanjem nalazi i drugi oblik jednadžbe tangente hiperbole

Tangenta hiperbole sa središtem u S(p, q)

Tangenta hiperbole koja ima središte u točki S(p, q) i koja prolazi točkom T na hiperboli, određena je koordinatama točke T i koeficijentom smjera tangente. Diferencirajući jednadžbu hiperbole nalazimo da je

odakle slijedi da je je

te se sličnim postupkom nalazi da je jednadžba tangente hiperbole

Izvori