Toggle menu
309,3 tis.
58
18
530 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Riemannova zeta-funkcija

Izvor: Hrvatska internetska enciklopedija
Riemannova zeta-funkcija u kompleksnoj ravnini
Riemannova zeta-funkcija za realni s > 1

U matematici, Riemannova zeta-funkcija, nazvana po Bernhardu Riemannu, je važna funkcija u teoriji brojeva zbog veze s teoremom o raspodjeli prostih brojeva. Također se primjenjuje u fizici, teoriji vjerojatnosti, i primijenjenoj statistici.

Motivacija

Prvi korak ka Riemannovoj zeta-funkciji bilo je rješenje Baselskog problema, koje je 1735. postigao Leonhard Euler. To je bila suma reda

.

Koristeći tehnike množenja i faktorizacije konačnih polinoma na beskonačnim polinomima[1] i povlačeći paralelu s Taylorovim redom funkcije sinus, Euler je izveo ζ(2), a ubrzo je svojom tehnikom došao i do izvoda vrijednosti zeta-funkcije i za sve veće parne brojeve.[2] Funkcija je kasnije proširena na sve kompleksne brojeve čiji je realni dio veći od 1.

Riemann je prvi detaljno istražio svojstva funkcije, povezao ju s prostim brojevima te dao tzv. Riemannovu hipotezu, pa se stoga funkcija i naziva po njemu.

Definicija

Funkcija ζ(s) je funkcija kompleksne varijable s i najprije se definirala sljedećom beskonačnom sumom:

Leonhard Euler je otkrio vezu zeta-funkcije i raspodjele prostih brojeva:

gdje, po definiciji, lijeva strana je ζ(s) a beskonačni produkt na desnoj strani je po svim prostim brojevima p.

Zeta-funkcija daje sljedeće vrijednosti za neke odabrane brojeve:

; (harmonijski red)
; koristi se za računanje kritične temperature Bose–Einsteinovog kondenzata u fizici.
; dokaz ove jednakosti je tzv. Bazelski problem.
; tzv. Apéryjeva konstanta

Poznato je da zeta-funkcija ima nultočke -2, -4, -6... One se nazivaju trivijalnima. Hipoteza da sve ostale (kompleksne) nultočke imaju realni dio jednak 1/2 je poznata kao Riemannova hipoteza i do sada nije riješena.

Vidi još

Izvori

  1. Ova metoda nije rigorozna i može proizvesti kontradikcije, no u ovom slučaju je dala točan rezultat. Euler je 1741. rigorozno dokazao svoj rezultat.
  2. +plus magazine An infinite series of surprises, objavljeno 1. prosinca 2001., pristupljeno 1. listopada 2020. (engl.)

Literatura

  • Bernhard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse (1859). In Gesammelte Werke, Teubner, Leipzig (1892), Reprinted by Dover, New York (1953).
  • Jacques Hadamard, Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques, Bulletin de la Societé Mathématique de France 14 (1896) pp 199-220.
  • Helmut Hasse, Ein Summierungsverfahren für die Riemannsche ζ-Reihe, (1930) Math. Z. 32 pp 458-464. (Globally convergent series expression.)
  • E. T. Whittaker and G. N. Watson (1927). A Course in Modern Analysis, fourth edition, Cambridge University Press (Chapter XIII).

Vanjske poveznice

  1. PREUSMJERI Predložak:Kategorizirati