Toggle menu
309,3 tis.
59
18
530,1 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Podskup

Izvor: Hrvatska internetska enciklopedija

U matematici, a posebno u teoriji skupova, skup A je podskup skupa B ako je A sadržan u B. Pritom A može biti jednak B.

Definicije

Ako su A i B skupovi, i svaki element iz A je također i element iz B, onda:

  • A je podskup skupa B, u oznaci ,
ili ekvivalentno
  • B je nadskup skupa A, u oznaci .[1]

Ako je A podskup od B, ali A nije jednak B (to jest, postoji barem jedan element u B koji ne postoji u A), onda

  • A je također pravi podskup od B; ovo se zapisuje kao .
ili ekvivalentno
  • B je pravi nadskup od A; ovo se zapisuje kao .

Za svaki skup S, relacija inkluzije ⊆ je parcijalni uređaj na skupu 2S svih podskupova od S (partitivni skup od S).

Simboli ⊂ i ⊃

Ponekad se zapisuje A ⊂ B umjesto A ⊆ B da bi označili da je A podskup od B. Slično, ponekad se piše A ⊃ B da bi označili da je A nadskup od B. Po ovoj konvenciji, ako je sve što znamo da je A ⊂ B, još uvijek je moguće da su A i B jednaki skupovi.

Nekad se simboli ⊂ i ⊃ koriste da označe prave podskupove ili nadskupove umjesto i . Ovo korištenje čini simbole ⊆ i ⊂ analogne simbolima ≤ i <. Na primjer, ako x ≤ y onda x može biti jednako y, ali ne mora, ali ako je x < y, onda x sigurno nije jednako y, već je strogo manje od y. Slično, ako se uzme da ⊂ znači pravi podskup, onda ako A ⊆ B, slijedi da A može ali ne mora biti jednako B, ali ako A ⊂ B, onda A sigurno nije jednako B.

Primjeri

  • Skup {1, 2} je pravi podskup skupa {1, 2, 3}.
  • Svaki skup je podskup samog sebe, ali nije pravi podskup samog sebe.
  • Prazan skup, u oznaci ∅, je također podskup svakog danog skupa X. Prazan skup je uvijek pravi podskup, osim sebi samom.
  • Skup {x : x je prost broj veći od 2000} je pravi podskup skupa {x : x je neparan broj veći od 1000}
  • Skup prirodnih brojeva je pravi podskup skupa racionalnih brojeva, a skup točaka na dužini je pravi podskup skupa točaka na pravcu na kojem ta dužina leži. Ovo su kontraintuitivni primjeri kod kojih su i dio i cjelina beskonačni, i dio ima isti broj elemenata kao cjelina.

Vidi još

  • Direktni ili Descartesov proizvod skupa A i skupa B je skup svih uređenih parova (a,b) kod kojih je prvi član iz skupa A, a drugi iz skupa B:

Izvori

  1. Kurepa, Svetozar. Matematička analiza 1. Diferenciranje i integriranje. Zagreb: Školska knjiga, 1997.; str. 16


ro:Mulțime#Submulțimi