Fibonaccijev broj

Izvor: Hrvatska internetska enciklopedija
Inačica 450006 od 25. ožujak 2022. u 13:00 koju je unio WikiSysop (razgovor | doprinosi) (bnz)
(razl) ←Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)
Prijeđi na navigaciju Prijeđi na pretraživanje

Fibonaccijevi brojevi oblikuju niz definiran sljedećom rekurzivnom relacijom:

Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(n):= \begin{cases} 0 & \mbox{ako je } n = 0; \\ 1 & \mbox{ako je } n = 1; \\ F_{n-1} + F_{n-2}\!\, & \mbox{ako je } n > 1. \\ \end{cases} }

Dakle, nakon dvije početne vrijedosti, svaki sljedeći broj je zbroj dvaju prethodnika. Primjerice, Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 + 3 } dat će Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 } , Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3+5} dat će Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 } , itd.

Prvi Fibonaccijevi brojevi, također označeni kao Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_n } , za Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 0, 1, 2, ... } su redom Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1, 1, 2, 3, 5, 8, 13, 21, ... }

Treba napomenuti da Fibonaccijev niz ipak može početi i s Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_1 = 1 } umjesto s Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_0 = 0, } no to često nije bitno u konkretnim razmatranjima svojstava tog niza.

Pogreška pri izradbi sličice:
Popločanje s kvadratima čije su stranice po duljini sukcesivni Fibonaccijevi brojevi
Fibonaccijeva spirala, stvorena iscrtavanjem lukova koji spajaju suprotne kuteve kvadrata u Fibonaccijevom popločanju prikazanom gore – vidjeti zlatna spirala.

Fibonaccijevi brojevi su imenovani po Leonardu od Pise, poznatom kao Fibonacci, iako su ranije opisani u Indiji.[1][2]

Osnovna svojstva

Svojstva vezana uz djeljivost

  • Svaka dva uzastopna Fibonaccijeva broja su relativno prosta. Dokažimo to. Pretpostavimo da je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(F_{n - 1}, F_n) = d. } No, onda je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d | F_{n} - F_{n - 1} = F_{n - 2}. } Analogno, Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d | F_{n - 3}, F_{n - 4}, ..., F_1 = 1 } što povlači
  • Vrijedi
.

Ovo se svojstvo lako pokaže indukcijom. Za Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle k=1} , tvrdnja je očita. Pretpostavimo da tvrdnja vrijedi za neki . Uočimo sada da je , tj. Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{(k+1)n}=F_{kn-1}F_{n}+F_{kn}F_{n+1}} (vidjeti vezu s Morseovim kodom). Kako Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{n}|F_{kn}} iz gornje jednakosti slijedi , čime je tvrdnja dokazana.

  • Vrijedi:
.

Neka je Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M(m,n)=d} . Kako, prema gornjoj jednakosti Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{d}|F_{m},F_{n}} . (Jer su Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle m,n} višekratnici od .) Iz ovoga očito slijedi Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_d | M(F_m, F_n)} . (1)

Prema Bézoutovoj lemi se može prikazati kao linearna kombinacija Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle am + bn} za cijele brojeve .

Zato je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_d = F_{am + bn}} pa slijedi da se Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_d} može zapisati kao linearna kombinacija Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_m, F_n} jer je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_d = F_{am - 1}F_{bn} + F_{am}F_{bn + 1}} . Dakle, Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(F_m, F_n) | F_d} . (2)

Iz (1) i (2) slijedi Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_d = M(F_m, F_n)} , što je i trebalo pokazati.[3]

Druga važna svojstva

  • Vrijedi Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_n = \frac{1}{\sqrt{5}}[{(\frac{1 + \sqrt{5}}{2})}^n - {(\frac{1 - \sqrt{5}}{2})}^n]. } Ovo se važno svojstvo Fibonaccijevih brojeva naziva Binetova formula.
  • Vrijedi Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{n - 1}F_{n + 1} = F_n^2 + (- 1)^n, n \geq 2.. } Ovo se pravilo naziva Cassinijev identitet.[4]

Povezanost sa zlatnim rezom

Ako imamo dvije dužine, jednu dužu i jednu kraću te ako je omjer duljina duže na prema kraćoj dužini jednak zlatnom rezu (Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \approx 1.618 } ), tada je zlatnom rezu jednak i omjer zbroja duljina duže i kraće dužine na prema duljini duže.

Vidjet ćemo da se slična relacija može naći u omjerima triju uzastopnih Fibonaccijevih broja, Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{n - 1}, F_n, F_{n + 1}. } Naime, iz Cassinijevog identiteta dijeljenjem obje strane s Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{n - 1}F_n, } slijedi Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{F_n}{F_{n - 1}} = \frac{F_{n + 1}}{F_n} + \frac{(- 1)^n}{F_{n - 1}F_n}. }

Kada Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \rightarrow \infty } možemo zanemariti drugi pribrojnik pa dobivamo Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{F_n}{F_{n - 1}} = \frac{F_{n + 1}}{F_n} } što zadovoljava povijesnu (geometrijsku) definiciju zlatnog reza navedenu gore.

Veza s Morseovim kodom

Morseov kod je niz točaka i crtica. Duljinu Morseovog koda definiramo tako da svaka točka pridonosi duljinu 1, a svaka crtica duljinu 2.

Prema tome, ako imamo Morseov kod duljine n, onda možemo zamisliti da imamo n pozicija od kojih su neke spojene crticama, a na ostalima se nalaze točke.

Zato možemo zamisliti da je crtica zapravo spojnica dviju točaka, ali dvije crtice ne mogu stajati jedna pored druge (razmak mora biti najmanje jedna ili više točaka).

Označimo sada s Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_n} broj svih Morseovih kodova duljine Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} . Dokazat ćemo relaciju Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_n = M_{n - 1} + M_{n - 2}} koja je posve ekvivalentna rekurzivnoj formuli Fibonaccijeva niza.

Naime, Morseov kod duljine Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} može započeti točkom (takvih ima Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_{n - 1}} ) ili crticom (takvih ima Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_{n - 2}} ). Dakle, očito je Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{n}=M_{n-1}+M_{n-2}} te vrijedi Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{1}=1} , Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{2}=2} iz čega slijedi direktna veza s Fibonaccijevim nizom: Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{n}=F_{n+1}} .

Važni identiteti

Vrijedi:

Dokaz. Gore smo pokazali da je jednak broju svih Morseovih kodova duljine Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle m+n-1} .

Uočimo sada u svakom takvom kodu -vu i Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle m} -tu poziciju. Morseove kodove ćemo podijeliti na one koji imaju crticu između te dvije pozicije i na one koji ju nemaju.

Jasno je da kod koji ima crticu između -ve i Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle m} -te pozicije može na prve Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle m-2} pozicije imati bilo kakav Morseov kod, a potom mora imati crticu, a zatim na zadnjih pozicija može ponovno imati bilo kakav Morseov kod pa takvih kodova očigledno ima . S druge strane, kod koji nema crticu između -ve i Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle m} -te pozicije može na prvih pozicija imati bilo kakav Morseov kod, kao i na zadnjih Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (m+n-1)-(m-1)=n} pozicija. Zato takvih kodova ima Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{m-1}M_{n}=F_{m}F_{n+1}} , čime je identitet dokazan.

Od ostalih identiteta s Fibonaccijevim brojevima koji su vezani uz Morseov kod, po važnosti se ističu sljedeći:

  • Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{2n}=F_{n+1}^{2}-F_{n-1}^{2}} ,
  • ,
  • Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{1}+F_{2}+...+F_{n}=F_{n+2}-1} .[5]

Varijacije Fibonaccijevog niza

Možemo konstruirati nove nizove za koje neće nužno vrijediti kao što to vrijedi za Fibobaccijev niz. No, željet ćemo da osnovno pravilo, odnosno identitet, vrijedi za sve te nizove. Takve nizove jednim imenom nazivamo generalizirani Fibonaccijevi nizovi.

Uočimo da je neki takav niz Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle a_{(F_{1},F_{2})}} zadan ako su zadani Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{1},F_{2}\in \mathbb {N} .}

No, dakako da mogu biti negativni. Uočimo da će Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{n}\rightarrow -\infty } kada Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle n\rightarrow \infty } samo ako je ili bez smanjenja općenitosti (možemo permutirati ) kada je

Primjeri

Ovdje su primjeri takvih nizova: Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle a_{(5,5)}=5,5,10,15,35,...} , Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle a_{(3,8)}=3,8,11,19,...} , no možemo formirati niz za koji vrijedi Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{1}>F_{2}} kao npr. Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle a_{(4,2)}=4,2,6,8,...}

Lucasovi brojevi

Za dobivamo niz tzv. Lucasovih brojeva nazvanih po francuskom matematičaru Françoisu Édouardu Anatoleu Lucasu (1842. - 1891.).

Evo prvih nekoliko članova tog niza:

Trojke generaliziranog Fibonaccijevog niza

Tri utastopna člana Fibonaccijevog niza zajednički zovemo trojka generaliziranog Fibobaccijevog niza. Uočimo da za Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle n\in \{2,3,...\}} vrijedi Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{n}<F_{n+1}<F_{n+2}.} (Za sustav nejednakosti Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{n}<F_{n+1}<F_{n+2}} ipak ne vrijedi ako niz počinje s )

Dakle, intuitivno je da vrijedi Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{n}F_{n+2}\approx F_{n+1}F_{n+1}.} Zapravo, ispravno je prema Cassinijevom identitetu. Označimo sada s

Pretpostavimo sada da su Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{1}\leq F_{2}} dva početna broja niza za kojeg vrijedi osnovna relacija iz Fibonaccijevog niza.

Hoće li umnožak prvog i trećeg člana, Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{n}\cdot F_{n+2}} , neke trojke biti veći za 1 odnosno manji za 1 od kvadrata srednjeg člana, , te trojke isključivo ovisi o razlici prvog i drugog člana tog niza, Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle d=F_{2}-F_{1}} .

Ispišimo prvih nekoliko članova tog niza:

Slučaj 1.,

Ovdje će vrijediti Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle F_{n}F_{n+2}=F_{n+1}F_{n+1}+(-1)^{n}F^{2},} tj. vrijedit će Obrada nije uspjela. (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle D=F^{2}} ako je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n } paran, odnosno Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = - d^2 } ako je neparan. (1)

Dokaz. Uočimo da je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d = 0. } Ispišimo nekoliko članova ovog niza: Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, x, x + x, (x + x) + x, ... = x, x, 2x, 3x, ...} Za prvu trojku Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_1 = (x, x, x + x) } vrijedi (1) jer je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = (x + x)x - xx = xx = x^2 = F^2. } Za sljedeću trojku Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_2 = (x, 2x, 3x) } računamo Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = ((x + x) + x)x - (x + x)(x + x), } odakle je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = - xx = - F^2. } Slično se provjeri za Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_3 = (2x, 3x, 5x) } pa se (1) lako dokaže matematičkom indukcijom.

Dakle, vrijedit će Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D(T_1) = F^2, D(T_2) = - F^2, D(T_3) = F^2, ... }

Slučaj 2., Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_1 < F_2 }

Slično se dokazuje da u ovom slučaju vrijedi Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = F_1^2 - (F_1 + d)d. } Odavde vidimo da ako je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d < F_1 } će biti Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D(T_{2k - 1})> 0, D(T_{2k}) < 0} za Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \in \mathbb{N} } , a ako je Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d > F_1 } vrijedit će obratno.

Fibonnacijev niz u prirodi

Fibonaccijev niz se često povezuje i s brojem zlatnog reza fi (phi, Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi } ), ili brojem kojeg mnogi zovu i "Božanskim omjerom". Uzmemo li jedan dio Fibonaccijevog niza, Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2, 3, 5, 8, } te podijelimo li svaki sljedeći broj s njemu prethodnim, dobiveni broj težit će broju fi: Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{2} = 1, \frac{5}{3} = 1.67, \frac{8}{5} = 1.6, } itd. Broj Obrada nije uspjela. (MathML sa SVG ili PNG za rezervu (preporučljivo za moderne preglednike i alate za pristupačnost): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1,618 } je fi zaokružen na tri decimale (fi je iracionalan). Odnosi mjera kod biljaka, životinja i ljudi, sa zapanjujućom preciznošću se približava broju fi.

Slijedi nekoliko primjera broja fi i njegove povezanosti sa Fibonaccijem i prirodom:

  1. U pčelinjoj zajednici, košnici, uvijek je manji broj mužjaka pčela nego ženki pčela. Kada bi podijelili broj ženki sa brojem mužjaka pčela, uvijek bi dobili broj fi.
  2. Nautilus (glavonožac), u svojoj konstrukciji ima spirale. Kada bi izračunali odnos svakog spiralnog promjera prema sljedećem dobili bi broj fi.
  3. Sjeme suncokreta raste u suprotnim spiralama. Međusobni odnosi promjera rotacije je broj fi.
  4. Izmjerimo li čovječju dužinu od vrha glave do poda, zatim to podijelimo s dužinom od pupka do poda, dobijamo broj fi.

Izvori

  1. Parmanand Singh. Acharya Hemachandra and the (so called) Fibonacci Numbers. Math . Ed. Siwan , 20(1):28-30,1986.ISSN 0047-6269]
  2. Parmanand Singh,"The So-called Fibonacci numbers in ancient and medieval India. Historia Mathematica v12 n3, 229–244,1985
  3. http://services.artofproblemsolving.com › ...PDF Divisibility in the Fibonacci Numbers - Art of Problem Solving
  4. http://e.math.hr/category/klju-ne-rije-i/fibonaccievi-brojevi
  5. Za dokaze, pogledati knjigu od akademika Andreja Dujelle, Teorija brojeva, Školska knjiga, 2019.


Nedovršeni članak Fibonaccijev broj koji govori o matematici treba dopuniti. Dopunite ga prema pravilima uređivanja Hrvatske internetske enciklopedije.