Lagrangeov teorem (teorija grupa)

Izvor: Hrvatska internetska enciklopedija
Inačica 441243 od 23. ožujak 2022. u 06:49 koju je unio WikiSysop (razgovor | doprinosi) (bnz)
(razl) ←Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)
Prijeđi na navigaciju Prijeđi na pretraživanje

Lagrangeov teorem jedan je od temeljnih teorema teorije grupa i kaže da za svaku konačnu grupu G, red (broj elemenata) podgrupe H od G dijeli red od G. Teorem je dobio ime po Joseph-Louis Lagrangeu.

Dokaz Lagrangeovog teorema

Dokaz se može provesti koristeći koncept lijevih H-grupa u G. Lijeve H-grupe su klase ekvivalencije relacije ekvivalencije na G pa stoga particioniraju G. Posebno, x i y iz G su u relaciji ako i samo ako postoji h iz H takav da je x = yh. Ako pokažemo da sve H-grupe imaju jednak broj elemenata onda svaka H-grupa ima točno |H| elemenata. Gotovi smo jer je red od H puta broj H-grupa jednak broju elemenata od G pa samim time i to da red od H dijeli red od G. Sada, ako su aH i bH dvije desne H-klase onda možemo definirati preslikavanje s . Ovo preslikavanje je bijekcija jer je inverz dan s . Ovaj dokaz pokazuje da je kvocijent redova jednak indeksu [G : H] (broj lijevih H-grupa u G).