Razlika između inačica stranice »Metoda parcijalne integracije«

Izvor: Hrvatska internetska enciklopedija
Skoči na:orijentacija, traži
(Bot: Automatski unos stranica)
 
m (bnz)
 
Redak 1: Redak 1:
<!--'''Metoda parcijalne integracije'''-->'''Metoda parcijalne integracije''' je postupak u matematici u kojemu se [[Integral|integral]] koji se ne može izračunati svodi na integral koji može.
Metoda parcijalne integracije''' je postupak u matematici u kojemu se [[Integral|integral]] koji se ne može izračunati svodi na integral koji može.


== Neodređeni integral ==
== Neodređeni integral ==

Trenutačna izmjena od 05:18, 19. ožujka 2022.

Metoda parcijalne integracije je postupak u matematici u kojemu se integral koji se ne može izračunati svodi na integral koji može.

Neodređeni integral

Formula za parcijalnu integraciju se izvodi iz formule za derivaciju produkta funkcija [math]\displaystyle{ (uv)' = u'v + uv' }[/math], koja se može zapisati kao

[math]\displaystyle{ \int uv' dx = uv - \int u'v dx }[/math]

što predstavlja formulu za parcijalnu integraciju.[1]:str. 308.

Funkcije [math]\displaystyle{ u }[/math] i [math]\displaystyle{ v }[/math] moraju biti izabrane tako da je integral s desne strane jednakosti moguće lakše izračunati nego početni. Treba imati na umu da će se u postupku morati izračunati i pomoćni integral

[math]\displaystyle{ \int v' dx }[/math].

Kao jednostavan primjer može poslužiti integral

[math]\displaystyle{ \int xe^x dx }[/math]

koji se izračunava parcijalnom integracijom stavljanjem [math]\displaystyle{ u = x }[/math] i [math]\displaystyle{ v' = e^x }[/math].

Određeni integral

Neka je [math]\displaystyle{ u : [a, b] \to \mathbb{R} }[/math] neprekidna funkcija, i [math]\displaystyle{ v : [a, b] \to \mathbb{R} }[/math] neprekidno diferencijabilna funkcija. Ako je [math]\displaystyle{ U }[/math] primitivna od [math]\displaystyle{ u }[/math] tada je formula za parcijalnu integraciju:[2]

[math]\displaystyle{ \int_a^b u(x)v(x)dx = U(b)v(b) - U(a)v(a) - \int_a^b U(x)v'(x)dx }[/math]

Izvori

  1. Elezović, Neven: Matematika 4 : udžbenik za IV. razred gimnazije, 2. izd., Element, Zagreb, 2000.
  2. [1], Integration by parts. Encyclopedia of Mathematics., (pristupljeno 23. kolovoza 2020.)