Umjetna radioaktivnost

Izvor: Hrvatska internetska enciklopedija
Skoči na:orijentacija, traži

Umjetna radioaktivnost je prvi put ostvarena 1934. kad su I. i F. Joliot-Curie proizveli umjetni radionuklid stabilnog kemijskog elementa. Oni su nuklearnim reakcijama proizveli umjetne radioaktivne elemente. Ti umjetni radioaktivni elementi su izotopi koji imaju i vrlo kratko polovično vrijeme raspadanja, i brzo prelaze u stabilne elemente. Bombardiranjem aluminija alfa-zrakama dobili su izotop fosfora, koji je radioaktivan pa prelazi u silicij koji nije radioaktivan. Kod tog raspadanja pojavljuje se jedna nova čestica koja ima istu masu kao elektron, samo ima pozitivan električni naboj, i zove se pozitron. Pozitron je prvi otkrio američki fizičar C. D. Anderson 1932. u kozmičkim zrakama.

Umjetni radioaktivni elementi imaju veliku primjenu u medicini i tehnici, u raznim granama privrede, a osim toga su mnogo jeftiniji od prirodnih radioaktivnih elemenata. Pomoću takvih elemenata može se pratiti tok nekog tehnološkog procesa jer se put radioaktivnog elementa u takvom procesu može točno kontrolirati pomoću Geiger-Müllerovog brojila. [1]

Radioaktivne jezgre mogu se dobiti bombardiranjem stabilnih jezgara protonima, alfa-česticama, neutronima i tako dalje, a najprikladniji su neutroni zato što nemaju električnoga naboja pa ne moraju imati veliku kinetičku energiju kako bi prodrli u atomske jezgre. Danas kao glavni izvor umjetnih radioaktivnih elemenata služe nuklearni reaktori i akceleratori čestica. Tijekom Drugog svjetskog rata i poslije toga razvijano je nuklearno oružje, a radioaktivnost razarajuće djeluje na ljude i sve žive organizme, zagađuje materijalne tvorevine, zemljište i zrak. [2]

Primjeri umjetne radioaktivnosti

Sljedeća tablica daje približne prosječne vrijednosti umjetne radioaktivnosti:

Prosječno čovjekovo izlaganje umjetnom ionizirajućem zračenju u milisivertima (mSv) na godinu
Izvor radijacije Svijet [3] SAD [4] Japan [5] Napomene
Medicinski izvor 0,60 3,00 2,30 svjetski prikaz isključuje radioterapiju; u SAD podaci su uglavnom za računalnu tomografiju i nuklearnu medicinu.
Potrošačke stavke 0,13 cigarete, putovanje zrakoplovom, građevinski materijali i tako dalje
Atmosfersko testiranje nuklearnog oružja 0,005 0,01 vrhunac od 0,11 mSv u 1963. i od tada opada; najveće vrijednosti blizu mjesta ispitivanja
Izlaganje na radnom mjestu 0,005 0,005 0,01 svjetski prosjek je za radnike samo 0,7 mSv, uglavnom zbog radona u rudnicima.

Za SAD vrijednosti su za medicinsko i zrakoplovno osoblje.[4]

Černobilska katastrofa 0,002 0,01 vrhunac od 0.04 mSv u 1986. i od tada opada; najveće vrijednosti blizu mjesta nesreće
Nuklearni gorivni ciklus 0,0002 0,001 do 0,02 mSv u blizini mjesta dobivanja sirovina za nuklearno gorivo; isključuje izlaganje osoblja
Ostalo 0,003 Industrija, osiguranje, nuklearna istraživanja
Ukupno 0,61 3,14 2,33

Izvori

  1. Velimir Kruz: "Tehnička fizika za tehničke škole", "Školska knjiga" Zagreb, 1969.
  2. radioaktivnost, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2018.
  3. United Nations Scientific Committee on the Effects of Atomic Radiation (2008). Sources and effects of ionizing radiation. New York: United Nations (objavljeno 2010). str. 4. ISBN 978-92-1-142274-0. http://www.unscear.org/unscear/en/publications/2008_1.html Pristupljeno 9. studenoga 2012. 
  4. 4,0 4,1 Ionizing radiation exposure of the population of the United States. Bethesda, Md.: National Council on Radiation Protection and Measurements. 2009. ISBN 978-0-929600-98-7. NCRP No. 160. http://www.ncrppublications.org/Reports/160 
  5. Ministry of Education, Culture, Sports, Science, and Technology of Japan "Radiation in environment" retrieved 2011-6-29