Toggle menu
310,1 tis.
50
18
525,6 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Stirlingov ciklus

Izvor: Hrvatska internetska enciklopedija

Stirlingov ciklus ili proces je termodinamički kružni ciklus po kojem rade Stirlingovi uređaji. Ciklus i uređaj koji radi po njemu su osmislili i patentirali braća Robert Stirling, svećenik, i James Stirling, inženjer, 1816. godine. Kako je riječ o termodinamičkom kružnom ciklusu, to znači da se ciklus vodi između dva toplinska spremnika različitih temperatura, tj. između ogrjevnog i rashladnog spremnika, a ukupna izmijenjena toplina između toplinskih spremnika jednaka je ukupnom izvršenom mehaničkom radu. Stirlingov ciklus može biti desnokretan ili lijevokretan; ako je desnokretan, mehanički rad se dobiva te uređaj radi kao motor, a ako je lijevokretan, mehanički rad se troši te uređaj radi kao rashladni uređaj ili dizalica topline. Specifičnost Stirlingovog ciklusa u odnosu na ostale kružne procese je taj što osim što je teoretski izveden kao zatvoren sustav, tako je izveden i u tehničkoj praksi; to znači da uređaji koji rade na principu Stirlingovog ciklusa nemaju usis i ispuh i da je unutar sustava sadržana konstantna masa radne tvari. Ciklus se u osnovi sastoji od dvije izoterme i dvije izohore.

Teorijski Stirlingov ciklus

Primjer motora koji radi na principu desnokretnog zatvorenog Stirlingovog ciklusa; u ovom slučaju Stirlingovog motora ß - tipa.
Teorijski desnokretni Stirlingov ciklus u p,v i T,s - dijagramu.

Teorijski Stirlingov ciklus razmotrit će se kao desnokretni zatvoreni ciklus; ciklus se sastoji od četiri promjene stanja:

  • 1-2: izotermna kompresija - rashladni spremnik odvodi toplinu radnom mediju zbog čega se radnom mediju smanjuje volumen
  • 2-3: izohorno dovođenje topline - stlačeni radni medij prolazi kroz regenerator koji ga grije dovodeći mu toplinu pri konstantnom volumenu
  • 3-4: izotermna ekspanzija - ogrjevni spremnik dovodi toplinu radnom mediju povećavajući mu volumen
  • 4-1: izohorno odvođenje topline - radni medij se vraća kroz regenerator predajući mu toplinu pri konstantnom volumenu.

Dok se na jednom dijelu cilindra izvode promjene stanja 2-3 i 3-4, na drugom dijelu cilindra se izvode promjene stanja 4-1 i 1-2 i obratno.

Energijska analiza Stirlingovog ciklusa

Specifična toplina se dovodi pri promjenama stanja 2-3 i 3-4:


gdje je - specifična toplina, - specifični toplinski kapacitet pri konstantnom volumenu, - termodinamička temperatura, - specifična entropija, - individualna plinska konstanta, - specifični volumen. Ukupno dovedena specifična toplina iznosi:

.


Specifična toplina se odvodi pri promjenama stanja 4-1 i 1-2:

.


Ukupno odvedena specifična toplina iznosi:

.


Kako je ukupno dobiveni specifični rad jednak ukupno izmijenjenoj specifičnoj toplini:

,


iz toga slijedi:

.


U gornjoj jednadžbi su zamijenjena mjesta temperaturama i te specifičnim volumenima i jer se predznakom - uz veličinu već naglasila činjenica da se radi o odvedenoj toplini. Kako se proces izvodi regenerativno, izohorno dovedena i izohorno odvedena specifična toplina su teorijski jednake, ali suprotnih predznaka tako da se one poništavaju. Još se može primijetiti da su i iz čega se zaključuje da su te iz tih spoznaja slijedi:


Gornja relacija predstavlja ukupno dobiveni specifični rad ciklusa, a ako ga se pomnoži s ukupnom masom radnog medija, tada se dobije ukupno dobiveni rad desnokretnog zatvorenog teorijskog Stirlingovog ciklusa. Snaga stroja koji bi radio na principu teorijskog Stirlingovog ciklusa glasi:


gdje je - ukupna masa radnog medija, a - broj okretaja stroja u sekundi.

Termički stupanj djelovanja Stirlingovog ciklusa

Termički stupanj djelovanja Stirlingovog ciklusa se definira kao:

,


a kako je u teorijskom ciklusu regenerator idealan ( ), tada vrijedi:

.


Konačno,termički stupanj djelovanja teorijskog Stirlingovog ciklusa glasi:

.

[1] [2]

Usporedba s ostalim teorijskim kružnim ciklusima

Teorijski Stirlingov ciklus s idealnim regeneratorom prema termičkom stupnju djelovanja potpuno je ekvivalentan termičkom stupnju djelovanja Carnotovog (najveći termički stupanj djelovanja) i Ericssonovog ciklusa (Ericssonov ciklus postiže Carnotov termički stupanj djelovanja samo uz idealni regenerator kao i Stirlingov ciklus), a veći od termičkog stupnja djelovanja Jouleovog, Dieselova i Ottova ciklusa. Prema dobivenom radu, najbolji ciklus je Ericssonov, a zatim slijede Stirlingov, Jouleov, Dieselov, Ottov te Carnotov ciklus.

[3]

Realni Stirlingov ciklus

Realni desnokretni Stirlingov ciklus - utjecaj gibanja klipa na količinu dobivenog rada; lijevo: sinusoidno gibanje, desno: diskontinuirano gibanje.

Nijedan današnji stroj ne radi na principu teorijskog kružnog ciklusa pa tako ni na principu teorijskog Stirlingovog ciklusa; razlozi su sljedeći: loše brtvljenje, postojanje volumena štetnog prostora, trenje, regeneratori koji nisu idealni... Unatoč tomu, možemo približno opisati tok Stirlingovog ciklusa uzimajući u obzir određene nesavršenosti te se tako dobije realni Stirlingov ciklus.

Izvori

Stirlingov motor [2]
Stirling cycle [3]
Stirling-Kreisprozess [4]

  1. Kolin, Ivo, Stirling motor, 1991., Zagreb University Publications, Ltd.
  2. Galović, Antun, Termodinamika I, Fakultet strojarstva i brodogradnje, Zagreb, 2008., ISBN 953-6313-44-8
  3. [1] Laboratorij za termoenergetiko


Nedovršeni članak Stirlingov ciklus koji govori o fizici treba dopuniti. Dopunite ga prema pravilima uređivanja Hrvatske internetske enciklopedije.

fr:Cycle de stirling