Toggle menu
310,1 tis.
36
18
525,5 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Realni plin

Izvor: Hrvatska internetska enciklopedija

Realni plin, za razliku od idealnog plina, ima svojstva koja se ne mogu objasniti s jednadžbom stanja idealnog plina. Da bi se razumjelo ponašanje realnog plina, treba uzeti u obzir i sljedeće osobine:

Za većinu primjena, kada je potrebna detaljna analiza, može se koristiti jednadžba stanja idealnog plina, s razumnom točnošću. S druge strane, modele realnih plinova, treba koristiti kada su plinovi u blizini točke kondenzacije i blizu kritičnih točki, kod visokih tlakova i u ostalim rjeđim slučajevima.

Modeli

Van der Waalsov model

Van der Waalsova jednadžba stanja za realne plinove se često uzima u obzir molarna težina i molarni volumen:

gdje je: ptlak, Ttemperatura, R– univerzalna plinska konstanta, Vmmolarni volumen, a i b su parametri koji se određuju empirijski za svaki plin, ali se ponekad mogu procijeniti uz pomoć kritične temperature (Tc) i kritičnog tlaka (Pc), koristeći sljedeće odnose: [1]

Redlich-Kwongov model

Redlich-Kwongova jednadžba je naredna jednadžba s dva parametra, koja se koristi za opisivanje realnih plinova. Ona je gotovo uvijek točnija od Van der Waalsove jednadžbe, a često je točnija i od jednadžbi s više od dva parametra. Ona glasi:

gdje su a i b dva empirijska parametra koja nisu jednaka parametrima u Van der Waalsovoj jednadžbi. [2]

Berthelotov model i modificirani Berthelotov model

Berthelotova jednadžba se vrlo rijetko koristi: [3]

ali modificirani oblik te jednadžbe je puno točniji:

Dietericijev model

To je dobar model ako treba uzeti u obzir ovisnost o temperaturi: [4]

Clausiusov model

Clausiusova jednadžba je jednostavna jednadžba s tri parametra za opis realnih plinova: [5]

gdje je:

Virialijev model

Virialijeva jednadžba se izvodi iz postupka narušavanja reda statističke mehanike: [6]

ili na drugi način:

gdje su: A, B, C, A′, B′, i C′ konstante ovisne o temperaturi.

Peng-Robinsonov model

Peng-Robinsonova jednadžba je interesantna i korisna, jer se može iskoristiti za opisivanje nekih tekućina i realnih plinova: [7]

Wohlov model

Wohlova jednadžba se koristi za kritične vrijednosti, i korisna je kada konstante za realne plinove nisu dostupne: [8]

gdje je:

Beattie-Bridgemanov model

Jednadžba glasi:

gdje je: d molarna gustoća, i a, b, c, A i B su empirijski parametri.

Benedict-Webb-Rubinov model

Benedict-Webb-Rubinova jednadžba glasi: [9]

gdje je d molarna gustoća, i a, b, c, A, B, C, α, and γ su empirijske konstante.

Izvori

  1. T. L. Hill: Statistical Thermodynamics, Addison-Wesley, Reading (1960.), p. 280
  2. "Fundamental fluid mechanics for the practicing engineer", James W. Murdock, publisher = CRC Press, 1993.
  3. Graebe O.: "Marcelin Berthelot", journal = Berichte der deutschen chemischen Gesellschaft, 1908.
  4. "Dieterici, Friedrich", New International Encyclopedia, 1905.
  5. Clausius R.: [1] "Über die Art der Bewegung, die wir Wärme nennen", journal =Annalen der Physik, 1857.
  6. Collins G. W.: "The Virial Theorem in Stellar Astrophysics", Pachart Press, 1978.
  7. "A New Two-Constant Equation of State", journal = Industrial and Engineering Chemistry: Fundamentals, 1976., Peng, DY, and Robinson
  8. "Otto Ruff und Alfred Wohl, Professoren der 1904 gegründeten Königlichen Technischen Hochschule zu Danzig" Teresa Sokolowska, Romuald Piosik, journal = Chemkon, 2004.
  9. Benedict M., Webb G. B. and Rubin L. C., "An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I. Methane, Ethane, Propane, and n-Butane", J. Chem. Phys., Vol. 8, No.4, pp. 334–345 (1940).