Toggle menu
242,8 tis.
110
18
646,1 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Aksiom dobre utemeljenosti: razlika između inačica

Izvor: Hrvatska internetska enciklopedija
Bot: Automatski unos stranica
 
m bnz
 
Redak 1: Redak 1:
<!--'''Aksiom dobre utemeljenosti'''-->'''Aksiom dobre utemeljenosti'''  je [[aksiom]] u [[teorija skupova|teoriji]] [[skup]]ova.<ref name=Vuković>[https://www.math.pmf.unizg.hr/sites/default/files/pictures/ts-skripta-2015.pdf Prirodoslovno matematički fakultet u Zagrebu] Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 55.</ref>  
'''Aksiom dobre utemeljenosti'''  je [[aksiom]] u [[teorija skupova|teoriji]] [[skup]]ova.<ref name=Vuković>[https://www.math.pmf.unizg.hr/sites/default/files/pictures/ts-skripta-2015.pdf Prirodoslovno matematički fakultet u Zagrebu] Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 55.</ref>  


Prema ovom aksiom svaki je skup ''dobro utemeljen'' u odnosu na [[relacija|relaciju]] <big>∈</big>. Iz ovog aksioma slijedi da ne postoji skup ''<big>x</big>'' za koji bi postojao [[beskonačnost|beskonačni]] [[niz]] skupova (x<sub>n</sub>) tako da vrijedi: ...∈ x<sub>2</sub> ∈ x<sub>1</sub> ∈<sub>x</sub>. Odavle posebno slijedi da ne postoji skup ''<big>x</big>'' za kojeg bi vrijedilo ''<big>x ∈ x </big>''. <ref name=Vuković/> [[Formalni jezik|Formalnim jezikom]] :<ref name=Vuković/>
Prema ovom aksiom svaki je skup ''dobro utemeljen'' u odnosu na [[relacija|relaciju]] <big>∈</big>. Iz ovog aksioma slijedi da ne postoji skup ''<big>x</big>'' za koji bi postojao [[beskonačnost|beskonačni]] [[niz]] skupova (x<sub>n</sub>) tako da vrijedi: ...∈ x<sub>2</sub> ∈ x<sub>1</sub> ∈<sub>x</sub>. Odavle posebno slijedi da ne postoji skup ''<big>x</big>'' za kojeg bi vrijedilo ''<big>x ∈ x </big>''. <ref name=Vuković/> [[Formalni jezik|Formalnim jezikom]] :<ref name=Vuković/>

Posljednja izmjena od 28. travanj 2022. u 18:15

Aksiom dobre utemeljenosti je aksiom u teoriji skupova.[1]

Prema ovom aksiom svaki je skup dobro utemeljen u odnosu na relaciju . Iz ovog aksioma slijedi da ne postoji skup x za koji bi postojao beskonačni niz skupova (xn) tako da vrijedi: ...∈ x2 ∈ x1x. Odavle posebno slijedi da ne postoji skup x za kojeg bi vrijedilo x ∈ x . [1] Formalnim jezikom :[1]

i logikom prvog reda:

Svaki dobro uređen skup je i dobro utemeljen, ali ne vrijedi obrat.[1]

Izvori

  1. 1,0 1,1 1,2 1,3 Prirodoslovno matematički fakultet u Zagrebu Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 55.
Sadržaj