Aksiom dobre utemeljenosti: razlika između inačica
Prijeđi na navigaciju
Prijeđi na pretraživanje
Bot: Automatski unos stranica |
m bnz |
||
Redak 1: | Redak 1: | ||
'''Aksiom dobre utemeljenosti''' je [[aksiom]] u [[teorija skupova|teoriji]] [[skup]]ova.<ref name=Vuković>[https://www.math.pmf.unizg.hr/sites/default/files/pictures/ts-skripta-2015.pdf Prirodoslovno matematički fakultet u Zagrebu] Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 55.</ref> | |||
Prema ovom aksiom svaki je skup ''dobro utemeljen'' u odnosu na [[relacija|relaciju]] <big>∈</big>. Iz ovog aksioma slijedi da ne postoji skup ''<big>x</big>'' za koji bi postojao [[beskonačnost|beskonačni]] [[niz]] skupova (x<sub>n</sub>) tako da vrijedi: ...∈ x<sub>2</sub> ∈ x<sub>1</sub> ∈<sub>x</sub>. Odavle posebno slijedi da ne postoji skup ''<big>x</big>'' za kojeg bi vrijedilo ''<big>x ∈ x </big>''. <ref name=Vuković/> [[Formalni jezik|Formalnim jezikom]] :<ref name=Vuković/> | Prema ovom aksiom svaki je skup ''dobro utemeljen'' u odnosu na [[relacija|relaciju]] <big>∈</big>. Iz ovog aksioma slijedi da ne postoji skup ''<big>x</big>'' za koji bi postojao [[beskonačnost|beskonačni]] [[niz]] skupova (x<sub>n</sub>) tako da vrijedi: ...∈ x<sub>2</sub> ∈ x<sub>1</sub> ∈<sub>x</sub>. Odavle posebno slijedi da ne postoji skup ''<big>x</big>'' za kojeg bi vrijedilo ''<big>x ∈ x </big>''. <ref name=Vuković/> [[Formalni jezik|Formalnim jezikom]] :<ref name=Vuković/> |
Posljednja izmjena od 28. travanj 2022. u 18:15
Aksiom dobre utemeljenosti je aksiom u teoriji skupova.[1]
Prema ovom aksiom svaki je skup dobro utemeljen u odnosu na relaciju ∈. Iz ovog aksioma slijedi da ne postoji skup x za koji bi postojao beskonačni niz skupova (xn) tako da vrijedi: ...∈ x2 ∈ x1 ∈x. Odavle posebno slijedi da ne postoji skup x za kojeg bi vrijedilo x ∈ x . [1] Formalnim jezikom :[1]
Svaki dobro uređen skup je i dobro utemeljen, ali ne vrijedi obrat.[1]
Izvori[uredi]
- ↑ 1,0 1,1 1,2 1,3 Prirodoslovno matematički fakultet u Zagrebu Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 55.