Toggle menu
309,3 tis.
59
18
530 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Datoteka:Mplwp universe scale evolution.svg

Izvor: Hrvatska internetska enciklopedija

Vidi sliku u punoj veličini(SVG datoteka, nominalno 600 × 450 piksela, veličina datoteke: 57 KB)


Logo Wikimedijinog spremnika Ova je datoteka sa stranica Zajedničkog poslužitelja Zaklade Wikimedije i smiju je rabiti drugi projekti. Opis s njezine stranice s opisom datoteke prikazan je ispod.

Sažetak

Opis
English: Plot of the evolution of the size of the universe (scale parameter a) over time (in billion years, Gyr). Different models are shown, which are all solutions to the Friedmann equations with different parameters. The evolution is governed by the equation
.

Here is the radiation density, the matter density, the curvature parameter and the dark energy, all normalized such that represents the fact that today's expansion rate is .
Plotted parameter sets:

  • De Sitter universe: Only dark energy:
  • Lambda-CDM model: The model that fits the observations best: ,
  • An empty universe (no relevant contributions of matter, radiation, dark energy) with negative curvature:
  • Einstein–de_Sitter universe: A flat universe dominated by cold matter:
  • A closed Friedmann model: ,
Datum
Izvor Vlastito djelo postavljača
Autor Geek3
SVG genesis
InfoField
 
Izvorni kôd ove SVG datoteke je valjan.
 
Ova je vektorska slika napravljena programom mplwp.
Izvorni kod
InfoField

Python code

#!/usr/bin/python
# -*- coding: utf8 -*-

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from math import *

code_website = 'http://commons.wikimedia.org/wiki/User:Geek3/mplwp'
try:
    import mplwp
except ImportError, er:
    print 'ImportError:', er
    print 'You need to download mplwp.py from', code_website
    exit(1)

name = 'mplwp_universe_scale_evolution.svg'
fig = mplwp.fig_standard(mpl)
fig.set_size_inches(600 / 72.0, 450 / 72.0)
mplwp.set_bordersize(fig, 58.5, 16.5, 16.5, 44.5)
xlim = -17, 22; fig.gca().set_xlim(xlim)
ylim = 0, 3; fig.gca().set_ylim(ylim)
mplwp.mark_axeszero(fig.gca(), y0=1)

import scipy.optimize as op
from scipy.integrate import odeint

tH = 978. / 68. # Hubble time in Gyr

def Hubble(a, matter, rad, k, darkE):
    # the Friedman equation gives the relative expansion rate
    a = a[0]
    if a <= 0: return 0.
    r = rad / a**4 + matter / a**3 + k / a**2 + darkE
    if r < 0: return 0.
    return sqrt(r) / tH

def scale(t, matter, rad, k, darkE):
    return odeint(lambda a, t: a*Hubble(a, matter, rad, k, darkE), 1., [0, t])

def scaled_closed_matteronly(t, m):
    # analytic solution for matter m > 1, rad=0, darkE=0
    t0 = acos(2./m-1) * 0.5 * m / (m-1)**1.5 - 1. / (m-1)
    try: psi = op.brentq(lambda p: (p - sin(p))*m/2./(m-1)**1.5
                                   - t/tH - t0, 0, 2 * pi)
    except Exception: psi=0
    a = (1.0 - cos(psi)) * m * 0.5 / (m-1.)
    return a

# De Sitter http://en.wikipedia.org/wiki/De_Sitter_universe
matter=0; rad=0; k=0; darkE=1
t = np.linspace(xlim[0], xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, zorder=-2,
         label=ur'$\Omega_\Lambda=1$,               de Sitter')

# Standard Lambda-CDM https://en.wikipedia.org/wiki/Lambda-CDM_model
matter=0.3; rad=0.; k=0; darkE=0.7
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, zorder=-1,
    label=ur'$\Omega_m=0.\!3,\Omega_\Lambda=0.\!7$, $\Lambda$CDM')

# Empty universe
matter=0; rad=0; k=1; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_k=1$,    empty universe', zorder=-3)

'''
# Open Friedmann
matter=0.5; rad=0.; k=0.5; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=0.\!5, \Omega_k=0.5$')
'''

# Einstein de Sitter http://en.wikipedia.org/wiki/Einstein–de_Sitter_universe
matter=1.; rad=0.; k=0; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=1$, Einstein de Sitter', zorder=-4)

'''
# Radiation dominated
matter=0; rad=1.; k=0; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_r=1$')
'''

# Closed Friedmann
matter=6; rad=0.; k=-5; darkE=0
t0 = op.brentq(lambda t: scaled_closed_matteronly(t, matter)-1e-9, -20, 0)
t1 = op.brentq(lambda t: scaled_closed_matteronly(t, matter)-1e-9, 0, 20)
t = np.linspace(t0, t1, 5001)
a = [scaled_closed_matteronly(tt, matter) for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=6, \Omega_k=\u22125$,    closed', zorder=-5)

plt.xlabel('t [Gyr]')
plt.ylabel(ur'$a/a_0$')
plt.legend(loc='upper left', borderaxespad=0.6, handletextpad=0.5)
plt.savefig(name)
mplwp.postprocess(name)

Licencija

Ja, nositelj autorskog prava za ovo djelo, ovime ga objavljujem pod sljedećom licencijom:
w:hr:Creative Commons
imenovanje autora dijeli pod istim uvjetima
Slobodno smijete:
  • dijeliti – umnožavati, distribuirati i javnosti priopćavati djelo
  • remiksirati – prerađivati djelo
Pod sljedećim uvjetima:
  • imenovanje autora – Morate pripisati odgovarajuće autorske zasluge, dati poveznicu na licenciju, te naznačiti jesu li načinjene promjene autorskog djela. Prethodno navedeno možete učiniti na svaki razuman način, ali ne na način koji bi sugerirao da Vi ili Vaše korištenje licencorova djela ima izravno licencorovo odobrenje.
  • dijeli pod istim uvjetima – Ako ovo djelo izmijenite, preoblikujete ili stvarate na osnovu tog materijala, svoje doprinose morate distribuirati pod istom ili kompatibilnom licencijom kao što je i licencija originala.

Opisi

Dodajte kratko objašnjenje što predstavlja ova datoteka

Predmeti prikazani u ovoj datoteci

motiv

17. travnja 2017

Povijest datoteke

Kliknite na datum/vrijeme kako biste vidjeli datoteku kakva je tada bila.

Datum/VrijemeMinijaturaDimenzijeSuradnikKomentar
sadašnja00:12, 17. travanj 2017.Minijatura za inačicu od 00:12, 17. travanj 2017.600 × 450 (57 KB)wikimediacommons>Geek3validator fix

Nijedna stranica ne rabi ovu datoteku.

Metapodatci