Toggle menu
309,3 tis.
59
18
530 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Semi-Thue sustav

Izvor: Hrvatska internetska enciklopedija

U računarstvu i matematici, Semi-Thue sustav je sustav prepisivanja stringa. Imenovan je po norveškom matematičaru Axelu Thueu, koji je bio pionir u bavljenju sustavima prepisivanja stringa u ranom 20. stoljeću.

Definicija

Neka je konačna abeceda i Kleeneova zatvorenost nad . Tada je Semi-Thue sustav n-torka sa

Elementi od R se zovu produkcije ili pravila (prepisivanja), i obično se pišu kao pravila . Valja uočiti da R može biti beskonačan. Ako je semi-Thue sustav simetričan (tj. ), tada se također zove Thue sustav.

Povijest i važnost

Semi-Thue sustavi su razvijeni kao dio programa koji bi dodao dodatne konstrukte u logiku, te stvorio sustave kao što je propozicijska logika, koji bi omogućili izražavanje općenitih matematičkih teorema u formalnom jeziku, te da tako budu dokazani i verificirani na automatski, mehanički način. Nada je ležala u tome da bi čin dokazivanja teorema tad mogao biti sveden na skup definiranih manipulacija nad skupom stringova. Naknadno se shvatilo da su semi-Thue sustavi izomorfni gramatikama neograničenih produkcija, za koje se zna da su izomorfne Turingovim strojevima. Pa iako je ovaj istraživački program uspio u smislu da računala mogu biti korištena za verificiranje dokaza teorema, nije uspio na spektaluran način: računalo ne može razlikovati između zanimljivog teorema, i onog dozlaboga dosadnog.

Na prijedlog Alonza Churcha, Emil Post je u radu objavljenom 1947. prvi dokazao nerješivost "određenog problema Thuea", što Martin Davis iskazuje kao "...prvi dokaz nerješivosti za problem klasične matematike - u ovom slučaju problem riječi za polugrupe." (Undecidable, str. 292)

Davis tvrdi da je dokaz nezaivsno izveo A. A. Markov (C. R. (Doklady) Acad. Sci. U.S.S.R. (n.s.) 55(1947), str. 583-586.

Problem riječi za semi-Thue sustave

Problem riječi za semi-Thue sustave se može iskazati na sljedeći način: Za dani semi-Thue sustav i dvije riječi , može li biti transformiran u primjenom pravila iz ? Ovaj je problem neodlučiv, tj. ne postoji općenit algoritam za rješavanje ovog problema. Ovo vrijedi čak i ako se ograniči ulaz konačnih sustava.

Martin Davis nudi laičkom čitatelju dvostrani dokaz u svom članku What is a Computation?" str. 258-259 sa komentarom na str. 257. Davis dokaz izvodi na ovaj način: "izmisli [problem riječi] čije bi rješenje vodilo ka rješenju problema zaustavljanja."

Vidjeti također

Izvori

  • Martin Davis ed. (1965), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press, New York.
  • Emil Post (1947), Recursive Unsolvability of a Problem of Thue, pretisak u The Undecidable str. 293 u The Journal of Symbolic Logic, vol. 12 (1947) str. 1-11.


Nedovršeni članak Semi-Thue sustav koji govori o računarstvu treba dopuniti. Dopunite ga prema pravilima uređivanja Hrvatske internetske enciklopedije.