Wikipedija:Formule

Izvor: Hrvatska internetska enciklopedija
Inačica 55800 od 24. kolovoza 2021. u 06:19 koju je unio WikiSysop (razgovor | doprinosi) (Bot: Automatski unos stranica)
(razl) ←Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)
Skoči na:orijentacija, traži

Matematičke (i druge) formule na Wikipediji se pišu pomoću kôda preuzetog iz uređivačkog programa TeX (vidi: LaTeX). Taj se kôd kod prikazivanja stranice pretvara u HTML kôd (koji se onda prikazuje znak po znak) ili u sliku ekstenzije PNG, ovisno o tome kako je namješteno u postavkama.

Sintaksa

Kôd se upisuje unutar <math> ... </math>, što je dostupno i na traci s alatima (gumb [math]\displaystyle{ \sqrt{n} }[/math]). Slično kao i u HTML-u, višak razmaka i prelazak u novi red se ignoriraju. Wikipedijini alati (npr. podebljan/kurzivni tekst, predlošci, tablice, potpis, određivanje podnaslova itd.) ne rade unutar kôda za matematičke formule.


Prikazivanje

Kad se formula prikazuje u PNG formatu, dobije se crn tekst na bijeloj pozadini (ne prozirnoj). To ne ovisi o pregledniku. Veličina i oblik teksta se razlikuje od normalnog teksta (onog izvan kôda za matematičke formule), a problem je i vertikalno poravnavanje.

Ako želite da se formula prikaže u PNG formatu iako je dovoljno jednostavna da se može prikazati i u HTML formatu, na kraj formule dodajte \!,


Razlike između HTML i TeX kôda

Nekad je jednostavnije koristiti HTML kôd, ali on često nije dovoljno dobar, kao što je prikazano u sljedećoj tablici:

TeX kôd prikaz u PNG formatu HTML kôd prikaz kao HTML
<math>\alpha\,</math> [math]\displaystyle{ \alpha\, }[/math] &alpha; α
<math>\sqrt{2}</math> [math]\displaystyle{ \sqrt{2} }[/math] &radic;2 √2
<math>\sqrt{1-e^2}</math> [math]\displaystyle{ \sqrt{1-e^2} }[/math] &radic;(1&minus;''e''&sup2;) √(1−e²)

Za posebne znakove, eksponente i indekse, vidi Wikipedija:Kako uređivati stranicu#Vrste slova i pisanja.

Zašto HTML

  • Formule pisane unutar teksta uvijek su pravilno vertikalno poravnane.
  • Uvijek su iste veličine i oblika teksta i boje pozadine kao i ostatak teksta.
  • Stranica se brže učitava.

Zašto TeX

  • Kôd je jednostavnije pisati, i estetski više zadovoljava.
  • TeX kôd se može pretvoriti u HTML pa se kod jednostavnih formula mogu iskoristiti sve pogodnosti HTML-a.
  • Može se pretvoriti u MathML i koristiti u preglednicima koji ga podržavaju. (vidi: MathML (engl.) )
  • Nema razlike u prikazu kod različitih preglednika ili različitih verzija HTML-a.


Funkcije, simboli, posebni znakovi

Naglasci/dijakritici
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} [math]\displaystyle{ \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\! }[/math]
\check{a} \bar{a} \ddot{a} \dot{a} [math]\displaystyle{ \check{a} \bar{a} \ddot{a} \dot{a}\,\! }[/math]
Standardne funkcije
\sin a \cos b \tan c [math]\displaystyle{ \sin a \cos b \tan c\,\! }[/math]
\sec d \csc e \cot f [math]\displaystyle{ \sec d \csc e \cot f\,\! }[/math]
\arcsin h \arccos i \arctan j [math]\displaystyle{ \arcsin h \arccos i \arctan j\,\! }[/math]
\sinh k \cosh l \tanh m \coth n [math]\displaystyle{ \sinh k \cosh l \tanh m \coth n\,\! }[/math]
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q [math]\displaystyle{ \operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\! }[/math]
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t [math]\displaystyle{ \operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\! }[/math]
\lim u \limsup v \liminf w \min x \max y [math]\displaystyle{ \lim u \limsup v \liminf w \min x \max y\,\! }[/math]
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g [math]\displaystyle{ \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\! }[/math]
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n [math]\displaystyle{ \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\! }[/math]
Modularna aritmetika
s_k \equiv 0 \pmod{m} a \bmod b [math]\displaystyle{ s_k \equiv 0 \pmod{m} a \bmod b\,\! }[/math]
Derivacije
\nabla \partial x dx \dot x \ddot y [math]\displaystyle{ \nabla \partial x dx \dot x \ddot y\,\! }[/math]
Skupovi
\forall \exists \empty \emptyset \varnothing [math]\displaystyle{ \forall \exists \empty \emptyset \varnothing\,\! }[/math]
\in \ni \not \in \notin \subset \subseteq \supset \supseteq [math]\displaystyle{ \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\! }[/math]
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus [math]\displaystyle{ \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\! }[/math]
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup [math]\displaystyle{ \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\! }[/math]
Operatori
+ \oplus \bigoplus \pm \mp - [math]\displaystyle{ + \oplus \bigoplus \pm \mp - \,\! }[/math]
\times \otimes \bigotimes \cdot \circ \bullet \bigodot [math]\displaystyle{ \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\! }[/math]
\star * / \div \frac{1}{2} [math]\displaystyle{ \star * / \div \frac{1}{2}\,\! }[/math]
Logika
\land \wedge \bigwedge \bar{q} \to p [math]\displaystyle{ \land \wedge \bigwedge \bar{q} \to p\,\! }[/math]
\lor \vee \bigvee \lnot \neg q \And [math]\displaystyle{ \lor \vee \bigvee \lnot \neg q \And\,\! }[/math]
Korijeni
\sqrt{2} \sqrt[n]{x} [math]\displaystyle{ \sqrt{2} \sqrt[n]{x}\,\! }[/math]
Relacije
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} [math]\displaystyle{ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\! }[/math]
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto [math]\displaystyle{ \le \lt \ll \gg \ge \gt \equiv \not\equiv \ne \mbox{or} \neq \propto\,\! }[/math]
Geometrija
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ [math]\displaystyle{ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\! }[/math]
Strelice
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow [math]\displaystyle{ \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\! }[/math]
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow [math]\displaystyle{ \mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\! }[/math]
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft [math]\displaystyle{ \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\! }[/math]
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow [math]\displaystyle{ \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\! }[/math]
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft [math]\displaystyle{ \Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\! }[/math]
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright [math]\displaystyle{ \leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\! }[/math]
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow [math]\displaystyle{ \curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\! }[/math]
\nLeftrightarrow \longleftrightarrow [math]\displaystyle{ \nLeftrightarrow \longleftrightarrow\,\! }[/math]
Posebno
\eth \S \P \% \dagger \ddagger \ldots \cdots [math]\displaystyle{ \eth \S \P \% \dagger \ddagger \ldots \cdots\,\! }[/math]
\smile \frown \wr \triangleleft \triangleright \infty \bot \top [math]\displaystyle{ \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\! }[/math]
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar [math]\displaystyle{ \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\! }[/math]
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit [math]\displaystyle{ \ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\! }[/math]
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp [math]\displaystyle{ \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\! }[/math]
Nesortirano
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown [math]\displaystyle{ \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown }[/math]
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge [math]\displaystyle{ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge }[/math]
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes [math]\displaystyle{ \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes }[/math]
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant [math]\displaystyle{ \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant }[/math]
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq [math]\displaystyle{ \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq }[/math]
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft [math]\displaystyle{ \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft }[/math]
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot [math]\displaystyle{ \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot }[/math]
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq [math]\displaystyle{ \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq }[/math]
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork [math]\displaystyle{ \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork }[/math]
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq [math]\displaystyle{ \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq }[/math]
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid [math]\displaystyle{ \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid }[/math]
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr [math]\displaystyle{ \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr }[/math]
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq [math]\displaystyle{ \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq }[/math]
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq [math]\displaystyle{ \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq }[/math]
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq [math]\displaystyle{ \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq }[/math]
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus [math]\displaystyle{ \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\! }[/math]
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq [math]\displaystyle{ \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\! }[/math]
\dashv \asymp \doteq \parallel [math]\displaystyle{ \dashv \asymp \doteq \parallel\,\! }[/math]

Eksponenti, indeksi, integrali

Funkcija Kôd Izgled
HTML PNG
Eksponent a^2 [math]\displaystyle{ a^2 }[/math] [math]\displaystyle{ a^2 \,\! }[/math]
Indeks a_2 [math]\displaystyle{ a_2 }[/math] [math]\displaystyle{ a_2 \,\! }[/math]
Grupiranje a^{2+2} [math]\displaystyle{ a^{2+2} }[/math] [math]\displaystyle{ a^{2+2}\,\! }[/math]
a_{i,j} [math]\displaystyle{ a_{i,j} }[/math] [math]\displaystyle{ a_{i,j}\,\! }[/math]
Kombinacija x_2^3 [math]\displaystyle{ x_2^3 }[/math]
Prethodeći i/ili dodani eksponenti i indeksi \sideset{_1^2}{_3^4}\prod_a^b [math]\displaystyle{ \sideset{_1^2}{_3^4}\prod_a^b }[/math]
{}_1^2\!\Omega_3^4 [math]\displaystyle{ {}_1^2\!\Omega_3^4 }[/math]
"Povrh" \overset{\alpha}{\omega} [math]\displaystyle{ \overset{\alpha}{\omega} }[/math]
\underset{\alpha}{\omega} [math]\displaystyle{ \underset{\alpha}{\omega} }[/math]
\overset{\alpha}{\underset{\gamma}{\omega}} [math]\displaystyle{ \overset{\alpha}{\underset{\gamma}{\omega}} }[/math]
\stackrel{\alpha}{\omega} [math]\displaystyle{ \stackrel{\alpha}{\omega} }[/math]
Derivacije (samo u PNG-u) <code>x', y'', f', f''\!</code>   [math]\displaystyle{ x', y'', f', f''\! }[/math]
Derivacije (kurzivno f nekad preklapa apostrofe u HTML-u) <code>x', y'', f', f''</code> [math]\displaystyle{ x', y'', f', f'' }[/math] [math]\displaystyle{ x', y'', f', f''\! }[/math]
Točke \dot{x}, \ddot{x} [math]\displaystyle{ \dot{x}, \ddot{x} }[/math]
Potcrtano, "potez", vektori \hat a \ \bar b \ \vec c [math]\displaystyle{ \hat a \ \bar b \ \vec c }[/math]
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} [math]\displaystyle{ \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} }[/math]
\overline{g h i} \ \underline{j k l} [math]\displaystyle{ \overline{g h i} \ \underline{j k l} }[/math]
Strelice A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C [math]\displaystyle{ A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C }[/math]
Vitičaste zagrade gore \overbrace{ 1+2+\cdots+100 }^{5050} [math]\displaystyle{ \overbrace{ 1+2+\cdots+100 }^{5050} }[/math]
Vitičaste zagrade dolje \underbrace{ a+b+\cdots+z }_{26} [math]\displaystyle{ \underbrace{ a+b+\cdots+z }_{26} }[/math]
Suma \sum_{k=1}^N k^2 [math]\displaystyle{ \sum_{k=1}^N k^2 }[/math]
Suma (drugi oblik) \textstyle \sum_{k=1}^N k^2 [math]\displaystyle{ \textstyle \sum_{k=1}^N k^2 }[/math]
Produkt \prod_{i=1}^N x_i [math]\displaystyle{ \prod_{i=1}^N x_i }[/math]
Produkt (drugi oblik) \textstyle \prod_{i=1}^N x_i [math]\displaystyle{ \textstyle \prod_{i=1}^N x_i }[/math]
Koprodukt \coprod_{i=1}^N x_i [math]\displaystyle{ \coprod_{i=1}^N x_i }[/math]
Koprodukt (drugi oblik) \textstyle \coprod_{i=1}^N x_i [math]\displaystyle{ \textstyle \coprod_{i=1}^N x_i }[/math]
Limes \lim_{n \to \infty}x_n [math]\displaystyle{ \lim_{n \to \infty}x_n }[/math]
Limes (drugi oblik) \textstyle \lim_{n \to \infty}x_n [math]\displaystyle{ \textstyle \lim_{n \to \infty}x_n }[/math]
Integral \int_{-N}^{N} e^x\, dx [math]\displaystyle{ \int_{-N}^{N} e^x\, dx }[/math]
Integral (drugi oblik) \textstyle \int_{-N}^{N} e^x\, dx [math]\displaystyle{ \textstyle \int_{-N}^{N} e^x\, dx }[/math]
Dvostruki integral \iint_{D}^{W} \, dx\,dy [math]\displaystyle{ \iint_{D}^{W} \, dx\,dy }[/math]
Trostruki integral \iiint_{E}^{V} \, dx\,dy\,dz [math]\displaystyle{ \iiint_{E}^{V} \, dx\,dy\,dz }[/math]
Četverostruki integral \iiiint_{F}^{U} \, dx\,dy\,dz\,dt [math]\displaystyle{ \iiiint_{F}^{U} \, dx\,dy\,dz\,dt }[/math]
Path integral \oint_{C} x^3\, dx + 4y^2\, dy [math]\displaystyle{ \oint_{C} x^3\, dx + 4y^2\, dy }[/math]
Presjek \bigcap_1^{n} p [math]\displaystyle{ \bigcap_1^{n} p }[/math]
Unija \bigcup_1^{k} p [math]\displaystyle{ \bigcup_1^{k} p }[/math]

Razlomci, matrice, rad u više redova

Operacija Kôd Izgled
Razlomci \frac{2}{4}=0.5 [math]\displaystyle{ \frac{2}{4}=0.5 }[/math]
Mali razlomci \tfrac{2}{4} = 0.5 [math]\displaystyle{ \tfrac{2}{4} = 0.5 }[/math]
Veliki (normalni) razlomci \dfrac{2}{4} = 0.5 [math]\displaystyle{ \dfrac{2}{4} = 0.5 }[/math]
Veliki (ugniježđeni) razlomci \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a [math]\displaystyle{ \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a }[/math]
"Povrh" \binom{n}{k} [math]\displaystyle{ \binom{n}{k} }[/math]
Mali "Povrh" \tbinom{n}{k} [math]\displaystyle{ \tbinom{n}{k} }[/math]
Veliki (normalni) "Povrh" \dbinom{n}{k} [math]\displaystyle{ \dbinom{n}{k} }[/math]
Matrice
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
[math]\displaystyle{ \begin{matrix} x & y \\ z & v \end{matrix} }[/math]
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
[math]\displaystyle{ \begin{vmatrix} x & y \\ z & v \end{vmatrix} }[/math]
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
[math]\displaystyle{ \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} }[/math]
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
[math]\displaystyle{ \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} }[/math]
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
[math]\displaystyle{ \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} }[/math]
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
[math]\displaystyle{ \begin{pmatrix} x & y \\ z & v \end{pmatrix} }[/math]
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
[math]\displaystyle{ \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) }[/math]
Slučajevi
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
[math]\displaystyle{ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }[/math]
Jednadžbe u više redova
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
[math]\displaystyle{ \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} }[/math]
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
[math]\displaystyle{ \begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} }[/math]
Jednadžbe u više redova ({lcr} definira broj i poravnanje stupaca - l=lijevo(left), c=sredina(center), r=desno(right). Dakle, prvi stupac će biti poravnat lijevo, drugi u sredinu, treći desno. (ne koristiti ako nije prijeko potrebno))
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
[math]\displaystyle{ \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math]
Jednadžbe u više redova (dodatno objašnjenje)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
[math]\displaystyle{ \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math]
Lomljenje dugačke formule da prijeđe u novi red ako je potrebno

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

[math]\displaystyle{ f(x) \,\! }[/math][math]\displaystyle{ = \sum_{n=0}^\infty a_n x^n }[/math][math]\displaystyle{ = a_0 +a_1x+a_2x^2+\cdots }[/math]

Slučajevi
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
[math]\displaystyle{ \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} }[/math]

Vrste slova/fonta

Grčki alfabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta [math]\displaystyle{ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\! }[/math]
\Eta \Theta \Iota \Kappa \Lambda \Mu [math]\displaystyle{ \Eta \Theta \Iota \Kappa \Lambda \Mu \,\! }[/math]
\Nu \Xi \Pi \Rho \Sigma \Tau [math]\displaystyle{ \Nu \Xi \Pi \Rho \Sigma \Tau\,\! }[/math]
\Upsilon \Phi \Chi \Psi \Omega [math]\displaystyle{ \Upsilon \Phi \Chi \Psi \Omega \,\! }[/math]
\alpha \beta \gamma \delta \epsilon \zeta [math]\displaystyle{ \alpha \beta \gamma \delta \epsilon \zeta \,\! }[/math]
\eta \theta \iota \kappa \lambda \mu [math]\displaystyle{ \eta \theta \iota \kappa \lambda \mu \,\! }[/math]
\nu \xi \pi \rho \sigma \tau [math]\displaystyle{ \nu \xi \pi \rho \sigma \tau \,\! }[/math]
\upsilon \phi \chi \psi \omega [math]\displaystyle{ \upsilon \phi \chi \psi \omega \,\! }[/math]
\varepsilon \digamma \vartheta \varkappa [math]\displaystyle{ \varepsilon \digamma \vartheta \varkappa \,\! }[/math]
\varpi \varrho \varsigma \varphi [math]\displaystyle{ \varpi \varrho \varsigma \varphi\,\! }[/math]
Skupovi
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} [math]\displaystyle{ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\! }[/math]
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} [math]\displaystyle{ \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\! }[/math]
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} [math]\displaystyle{ \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\! }[/math]
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} [math]\displaystyle{ \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\! }[/math]
Podebljano (abeceda)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} [math]\displaystyle{ \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\! }[/math]
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} [math]\displaystyle{ \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\! }[/math]
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} [math]\displaystyle{ \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\! }[/math]
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} [math]\displaystyle{ \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\! }[/math]
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} [math]\displaystyle{ \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\! }[/math]
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} [math]\displaystyle{ \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\! }[/math]
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} [math]\displaystyle{ \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\! }[/math]
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} [math]\displaystyle{ \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\! }[/math]
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} [math]\displaystyle{ \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\! }[/math]
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} [math]\displaystyle{ \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\! }[/math]
Podebljano (alfabet)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} [math]\displaystyle{ \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\! }[/math]
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} [math]\displaystyle{ \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\! }[/math]
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} [math]\displaystyle{ \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\! }[/math]
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} [math]\displaystyle{ \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\! }[/math]
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} [math]\displaystyle{ \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\! }[/math]
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} [math]\displaystyle{ \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\! }[/math]
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} [math]\displaystyle{ \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\! }[/math]
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} [math]\displaystyle{ \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\! }[/math]
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} [math]\displaystyle{ \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\! }[/math]
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} [math]\displaystyle{ \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\! }[/math]
Kurziv
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} [math]\displaystyle{ \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\! }[/math]
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} [math]\displaystyle{ \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\! }[/math]
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} [math]\displaystyle{ \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\! }[/math]
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} [math]\displaystyle{ \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\! }[/math]
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} [math]\displaystyle{ \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\! }[/math]
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} [math]\displaystyle{ \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\! }[/math]
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} [math]\displaystyle{ \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\! }[/math]
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} [math]\displaystyle{ \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\! }[/math]
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} [math]\displaystyle{ \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\! }[/math]
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} [math]\displaystyle{ \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\! }[/math]
Roman font
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} [math]\displaystyle{ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\! }[/math]
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} [math]\displaystyle{ \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\! }[/math]
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} [math]\displaystyle{ \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\! }[/math]
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} [math]\displaystyle{ \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\! }[/math]
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} [math]\displaystyle{ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\! }[/math]
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} [math]\displaystyle{ \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\! }[/math]
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} [math]\displaystyle{ \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\! }[/math]
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} [math]\displaystyle{ \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\! }[/math]
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} [math]\displaystyle{ \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\! }[/math]
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} [math]\displaystyle{ \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\! }[/math]
Fraktur font
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} [math]\displaystyle{ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\! }[/math]
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} [math]\displaystyle{ \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\! }[/math]
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} [math]\displaystyle{ \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\! }[/math]
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} [math]\displaystyle{ \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\! }[/math]
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} [math]\displaystyle{ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\! }[/math]
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} [math]\displaystyle{ \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\! }[/math]
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} [math]\displaystyle{ \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\! }[/math]
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} [math]\displaystyle{ \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\! }[/math]
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} [math]\displaystyle{ \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\! }[/math]
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} [math]\displaystyle{ \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\! }[/math]
"Rukopis"
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} [math]\displaystyle{ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\! }[/math]
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} [math]\displaystyle{ \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\! }[/math]
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} [math]\displaystyle{ \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\! }[/math]
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} [math]\displaystyle{ \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\! }[/math]
Hebrejski
\aleph \beth \gimel \daleth [math]\displaystyle{ \aleph \beth \gimel \daleth\,\! }[/math]
Funkcija Kôd Izgled
sprečavanje automatskog kurziva kod slova \mbox{abc} [math]\displaystyle{ \mbox{abc} }[/math] [math]\displaystyle{ \mbox{abc} \,\! }[/math]
pomiješano (loše) \mbox{if} n \mbox{is even} [math]\displaystyle{ \mbox{if} n \mbox{is even} }[/math] [math]\displaystyle{ \mbox{if} n \mbox{is even} \,\! }[/math]
pomiješano (dobro) \mbox{if }n\mbox{ is even} [math]\displaystyle{ \mbox{if }n\mbox{ is even} }[/math] [math]\displaystyle{ \mbox{if }n\mbox{ is even} \,\! }[/math]
mixed italics (pouzdanije: "~" daje razmak koji se neće
prekidati na kraju reda, a "\ " samo daje razmak)
\mbox{if}~n\ \mbox{is even} [math]\displaystyle{ \mbox{if}~n\ \mbox{is even} }[/math] [math]\displaystyle{ \mbox{if}~n\ \mbox{is even} \,\! }[/math]

Zagrade i slično

Ne koristite unutar matematičkod kôda znakove "(" i ")" ako želite u zagradu staviti razlomke ili nešto "visoko":

Funkcija Kôd Izgled
Loše ( \frac{1}{2} ) [math]\displaystyle{ ( \frac{1}{2} ) }[/math]
Dobro \left ( \frac{1}{2} \right ) [math]\displaystyle{ \left ( \frac{1}{2} \right ) }[/math]
Funkcija Kôd Izgled
Oble zagrade \left ( \frac{a}{b} \right ) [math]\displaystyle{ \left ( \frac{a}{b} \right ) }[/math]
Uglate zagrade \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack [math]\displaystyle{ \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack }[/math]
Vitičaste zagrade \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace [math]\displaystyle{ \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace }[/math]
"Špičaste" zagrade \left \langle \frac{a}{b} \right \rangle [math]\displaystyle{ \left \langle \frac{a}{b} \right \rangle }[/math]
Apsolutna vrijednost i dvostruke okomite crte \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| [math]\displaystyle{ \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| }[/math]
Funkcije zaokruživanja \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil [math]\displaystyle{ \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil }[/math]
Kose crte \left / \frac{a}{b} \right \backslash [math]\displaystyle{ \left / \frac{a}{b} \right \backslash }[/math]
Strelice \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow [math]\displaystyle{ \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow }[/math]

Različite se vrste zagrada mogu
miješati dok je god broj oznaka
\left i \right jednak.

\left [ 0,1 \right )
\left \langle \psi \right |

[math]\displaystyle{ \left [ 0,1 \right ) }[/math]
[math]\displaystyle{ \left \langle \psi \right | }[/math]

Ako ne želite zagradu, poslije
\left ili \right dodajte točku.
\left . \frac{A}{B} \right \} \to X [math]\displaystyle{ \left . \frac{A}{B} \right \} \to X }[/math]
Veličina zagrada \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

[math]\displaystyle{ \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big] }[/math]

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

[math]\displaystyle{ \big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle }[/math]

\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| [math]\displaystyle{ \big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| }[/math]
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

[math]\displaystyle{ \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil }[/math]

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

[math]\displaystyle{ \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow }[/math]

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

[math]\displaystyle{ \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow }[/math]

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

[math]\displaystyle{ \big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash }[/math]

Razmaci

Razmaci se obično ne moraju sređivati jer su pravilno dodani automatski, no, nekad je potrebno ručno ih podesiti.

Funkcija Kôd Izgled
dva četverostruka razmaka a \qquad b [math]\displaystyle{ a \qquad b }[/math]
četverostruki razmak a \quad b [math]\displaystyle{ a \quad b }[/math]
običan razmak a\ b [math]\displaystyle{ a\ b }[/math]
običan razmak bez pretvorbe u PNG a \mbox{ } b [math]\displaystyle{ a \mbox{ } b }[/math]
velik razmak a\;b [math]\displaystyle{ a\;b }[/math]
srednji razmak a\>b [nije podržano]
malen razmak a\,b [math]\displaystyle{ a\,b }[/math]
bez razmaka ab [math]\displaystyle{ ab\, }[/math]
malen "negativan razmak" a\!b [math]\displaystyle{ a\!b }[/math]


Boje

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    [math]\displaystyle{ {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1} }[/math]
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    [math]\displaystyle{ x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a} }[/math]

Sve boje koje podržava LaTeX pogledajte ovdje.

Vanjska poveznica