Aksiom izbora

Izvor: Hrvatska internetska enciklopedija
Inačica 488840 od 28. travnja 2022. u 18:16 koju je unio WikiSysop (razgovor | doprinosi) (bnz)
(razl) ←Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)
Skoči na:orijentacija, traži
Disambig.svg Ovo je glavno značenje pojma Aksiom izbora. Za druga značenja pogledajte Aksiom izbora (razdvojba).

Aksiom izbora je aksiom iz teorije skupova.

Imamo I, proizvoljan neprazan skup i vrijedi

[math]\displaystyle{ {A_i: i \in I} }[/math] neprazna familija u parovima disjunktnih nepraznih skupova.

U tom slučaju ima skup B takve osobine da je

[math]\displaystyle{ B \cap A_i }[/math] jednočlan skup za sve [math]\displaystyle{ i \in I }[/math].

Drugim riječima, svakom nepraznom skupu je bar jedna jedna funkcija čiji su argumenti neprazni podskupovi tog skupa, a slike su elementi argumenata.[1]

Taj skup B nazivamo izborni skup za familiju [math]\displaystyle{ {A_i: i \in I} }[/math] [2]

Neke od posljedica aksioma izbora su čudne, kao što je poučak Banach-Tarskog.[3]

Analizom Cantorovih radova nameće se zaključak da skoro svi poučci koje je dobio daju se izvesti iz triju aksioma: aksioma rasprostranjenosti (ekstenzionalnosti), aksioma tj. načela komprehenzije i aksioma izbora.[1]

Izvori

  1. 1,0 1,1 Prirodoslovno matematički fakultet u Zagrebu Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 3.
  2. Prirodoslovno matematički fakultet u Zagrebu Ivan Krijan: Skupovi, Zagreb: Sveučilište u Zagrebu, str. 1. (pristupljeno 6. kolovoza 2019.)
  3. Prirodoslovno matematički fakultet u Zagrebu Mladen Vuković: Neki osnovni pojmovi teorije skupova, 2004. str. 6 (pristupljeno 20. studenoga 2019.)