Lanac (skup)
Za druga značenja, pogledajte Lanac.
Lanac je totalno uređeni podskup parcijalno uređenog skupa.[1] U lancu su svaka dva elementa usporediva, dok u antilancu vrijedi suprotno. Ako je C lanac, onda mu je duljina |C|−1 . [2] Lancima se bavi Spernerov teorem, Lubell-Yamamoto-Meshalkinova nejednakost, Mirskyev teorem, Dilworthov teorem i dr. [2]
Svaki lanac i antilanac u P imaju presjek u kojem je najviše jedan član. Zbog toga je duljina svakog lanca manja od najmanjeg broja antilanaca koji čija unija sadrži cijeli P, a veličina svakog antilanca je najviše jednaka najmanjem broju lanaca čija unija sadrži čitavi P.[2]
Jedan od preduvjeta Zornove leme je da lanac mora biti neprazan.[1]
Izvori[uredi | uredi kôd]
- ↑ 1,0 1,1 Prirodoslovno matematički fakultet u Zagrebu Ivan Krijan: Skupovi, Zagreb: Sveučilište u Zagrebu, str. 1.-2. (pristupljeno 5. listopada 2019.)
- ↑ 2,0 2,1 2,2 PMF Zagreb Matija Bašić: Uvod u algebarsku topologiju - Parcijalno uređeni skupovi - O lancima i antilancima, 21. svibnja 2014., str. 1 (pristupljeno 19. prosinca 2019.)